
commonly placed in the model in plausible positions according to
molecular geometry, but this can be misleading to people using the
coordinate set. If the atoms are included in the model, the atomic
displacement parameters generally become very large, and this may
be an acceptable flag for dynamic disorder. The hazard with this
procedure is that including these atoms in the model provides
additional parameters to conceal any error signal in the data that
might relate to problems elsewhere in the model.

At high resolution, it is sometimes possible to model the
correlated motion of atoms in rigid groups by a single tensor that
describes translation, libration and screw. This is rarely done for
macromolecules at present, but may be an extremely accurate way
to model the behaviour of the molecules. The recent development of
efficient anisotropic refinement methods for macromolecules by
Murshudov et al. (1999) will undoubtedly produce a great deal
more information about the modelling of dynamic disorder and
anisotropy in macromolecular structures.

Macromolecular crystals contain between 30 and 70% solvent,
mostly amorphous. The diffraction is not accurately modelled
unless this solvent is included (Tronrud, 1997). The bulk solvent is
generally modelled as a continuum of electron density with a high
atomic displacement parameter. The high displacement parameter
blurs the edges, so that the contribution of the bulk solvent to the
scattering is primarily at low resolution. Nevertheless, it is
important to include this in the model for two reasons. First, unless
the bulk solvent is modelled, the low-resolution structure factors
cannot be used in the refinement. This has the unfortunate effect of
rendering the refinement of all of the atomic displacement
parameters ill-determined. Second, omission or inaccurate phasing
of the low-resolution reflections tends to produce long-wavelength
variations in the electron-density maps, rendering them more
difficult to interpret. In some regions, the maps can become
overconnected, and in others they can become fragmented.

18.1.8. Optimization methods

Optimization methods for small molecules are straightforward, but
macromolecules present special problems due to their sheer size.
The large number of parameters vastly increases the volume of the
parameter space that must be searched for feasible solutions and
also increases the storage requirements for the optimization process.
The combination of a large number of parameters and a large
number of observations means that the computations at each cycle
of the optimization process are expensive.

Optimization methods can be roughly classified according to the
order of derivative information used in the algorithm. Methods that
use no derivatives find an optimum through a search strategy;
examples are Monte Carlo methods and some forms of simulated
annealing. First-order methods compute gradients, and hence can
always move in a direction that should reduce the objective
function. Second-order methods compute curvature, which allows
them to predict not only which direction will reduce the objective
function, but how that direction will change as the optimization
proceeds. The zero-order methods are generally very slow in high-
dimensional spaces because the volume that must be searched
becomes huge. First-order methods can be fast and compact, but
cannot determine whether or not the solution is a true minimum.
Second-order methods can detect null subspaces and singularities in
the solution, but the computational cost grows as the cube of the
number of parameters (or worse), and the storage requirements
grow as the square of the number of parameters – undesirable
properties where the number of parameters is of the order of 104.

Historically, the most successful optimization methods for
macromolecular structures have been first-order methods. This is
beginning to change as multi-gigabyte memories are becoming

more common on computers and processor speeds are in the
gigahertz range. At this time, there are no widely used refinement
programs that run effectively on multiprocessor systems, although
there are no theoretical barriers to writing such a program.

18.1.8.1. Solving the refinement equations

Methods for solving the refinement equations are described in IT
C Chapters 8.1 to 8.5 and in many texts. Prince (1994) provides an
excellent starting point. There are two commonly used approaches
to finding the set of parameters that minimizes equation (18.1.4.1).
The first is to treat each observation separately and rewrite each
term of (18.1.4.1) as

wi�yi � fi�x�� � wi

�N

j�1

�fi�x�
�xj

� �
�x0

j � xj�, �18�1�8�1�

where the summation is over the N parameters of the model. This is
simply the first-order expansion of fi�x� and expresses the
hypothesis that the calculated values should match the observed
values. The system of simultaneous observational equations can be
solved for the parameter shifts provided that there are at least as
many observations as there are parameters to be determined. When
the number of observational equations exceeds the number of
parameters, the least-squares solution is that which minimizes
(18.1.4.1). This is the method generally used for refining small-
molecule crystal structures, and increasingly for macromolecular
structures at atomic resolution.

18.1.8.2. Normal equations

In matrix form, the observational equations are written as

A� � r,

where A is the M by N matrix of derivatives, � is the parameter
shifts and r is the vector of residuals given on the left-hand sides of
equation (18.1.8.1). The normal equations are formed by multi-
plying both sides of the equation by AT . This produces an N by N
square system, the solution to which is the desired least-squares
solution for the parameter shifts.

AT A� � AT r or M� � b,

mij �
�M

k�1

wk
�fk�x�
�xi

� �
�fk�x�
�xj

� �
,

bi �
�M

k�1

wk�yk � fk�x�� �fk�x�
�xi

� �
�

Similar equations are obtained by expanding (18.1.4.1) as a second-
order Taylor series about the minimum x0 and differentiating.

��x� x0� � ��x0� �
�

��

�xi

� �

x0

������x� x0�
�

� 1
2

�
�x� x0�

�����
�2�

�xi�xj

� �

x0

������x� x0�
�

,

����
��

�x

� ��
�
�����

�2�

�xi�xj

� �

x0

������x� x0�
�
�

The second-order approximation is equivalent to assuming that the
matrix of second derivatives does not change and hence can be
computed at x instead of at x0.
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18.1.8.3. Choice of optimization method

First-order methods are generally the most economical for
macromolecular problems. The most general approach is to treat
the problem as a non-linear optimization problem from the
beginning. This strategy is used by TNT (Tronrud et al., 1987;
Tronrud, 1997) and by X-PLOR (Kuriyan et al., 1989), although by
very different methods.

TNT uses a preconditioned conjugate gradient procedure
(Tronrud, 1992), where the preconditioning function is the second
derivatives of the objective function with respect to each parameter.
In other words, at each step the parameters are normalized by the
curvature with respect to that parameter, and a normal conjugate
gradient step is taken. This has the effect that stiff parameters,
which have steep derivatives, are scaled down, while soft
parameters (such as B factors), which have small derivatives, are
scaled up. This greatly increases both the rate and radius of
convergence of the method.

X-PLOR (and its intellectual descendent, CNS) (Chapter 18.2 and
Section 25.2.3) uses a simulated annealing procedure that derives
sampling points by molecular dynamics. Simulated annealing is a
process by which the objective function is sampled at a new point in
parameter space. If the value of the objective function at the new
point is less than that at the current point, the new point becomes the
current point. If the value of the objective function is greater at the
new point than at the current point, the Boltzmann probability
exp���E�kT� of the difference in function values �E is compared
to a random number. If it is less than the random number, the new
point is accepted as the current point; otherwise it is rejected. This
process continues until a sufficiently deep minimum is found that
the sampling process never leaves that region of parameter space.
At this point the ‘temperature’ in the Boltzmann factor is reduced,
which lowers the probability that the current point will move out of
the region. This produces a finer search of the local region. The
cooling process is continued until the solution has been restricted to
a sufficiently small region. There are many variations of the strategy
that affect the rate of convergence and the completeness of
sampling. The primary virtue of simulated annealing is that it
does not become trapped in shallow local minima. Simulated
annealing can be either a zero-order method or a first-order method,
depending on the strategy used to generate new sampling points.
X-PLOR treats the fit to the diffraction data as an additional energy
term, and the gradient of that ‘energy’ is treated as a force. This
makes it a first-order method.

The first widely available macromolecular refinement program,
PROLSQ (Konnert, 1976), uses an approximation to the second-
order problem in which the matrix is greatly simplified. The
parameters for each atom are treated as a small block on the
diagonal of the matrix, and the off-diagonal blocks for pairs of
atoms related by geometric constraints are also filled in. The sparse
set of linear equations is then solved by an adaptation of the method
of conjugate gradients.

The most comprehensive refinement program available for
macromolecules is the same as the most comprehensive program
available for small molecules – SHELXL98 (Sheldrick, 1993; see
also Section 25.2.10). The primary adaptations to macromolecular
problems have been the addition of conjugate gradients as an
optimization method for cases in which the full matrix will not fit in
the available memory and facilities to process the polymeric models
required for macromolecules.

18.1.8.4. Singularity in refinement

Unless there are more linearly independent observations than
there are parameters to fit them, the system of normal equations has
no solution. The inverse of the matrix does not exist. Second-order
methods fail in these circumstances by doing the matrix equivalent

of dividing by zero. However, the objective function is still defined
and has a defined gradient at all points. First-order methods will find
a point at which the gradient is close to zero, and zero-order
methods will still find a minimum value for the objective function.
The difficulty is that the points so found are not unique. If one
computes the eigenvalues and eigenvectors of the matrix of normal
equations, one will find in this case that there are some eigenvalues
that are very small or zero. The eigenvectors corresponding to these
eigenvalues define sets of directions in which the parameters can be
moved without affecting the value of the objective function. This
region of the parameter space simply cannot be determined by the
available data. The only recourses are to modify the model so that it
has fewer parameters, add additional restraints to the problem, or
collect more data. The real hazard with this situation is that the
commonly used refinement methods do not detect the problem.
Careful use of cross validation and keeping careful count of the
parameters are the only remedy.

18.1.9. Evaluation of the model

Macromolecular model refinement is a cyclic process. No presently
known refinement algorithm can remove all the errors of chain
tracing, conformation, or misinterpretation of electron density.
Other methods must be interspersed with refinement to help remove
model errors. These errors are detected by basic sanity checks and
the use of common sense about the model. This topic is discussed
comprehensively in Part 21 and in Kleywegt (2000).

18.1.9.1. Examination of outliers in the model

Refinement-program output listings will normally provide some
information on atoms that are showing non-standard bond lengths,
bond angles or B factors. In addition, there is other software which
can help identify non-standard or unusual geometry, such as
PROCHECK (Laskowski et al., 1993) and WHAT IF (Vriend,
1990). These are very useful in identifying questionable regions of
structure but should not be completely relied on to identify errors or
how the molecular models may be improved. Overall, the
constraints in the model must be satisfied exactly, and the restraints
should have a statistically reasonable distribution of deviations from
the ideal values.

18.1.9.2. Examination of model electron density

Refinement of the model to improve the agreement between the
observed and calculated diffraction data and the associated
calculated phases should result in improved electron-density and
�F maps. Unexplained features in the electron-density map or
difference map are a clear indication that the model is not yet
complete or accurate. Careful examination of the Fourier maps is
essential. Interactive graphics programs such as XtalView (McRee,
1993) and O contain a number of analysis tools to aid in the
identification of errors in the models.

There are several different types of Fourier maps that can be
useful in the correction of the models. This topic is discussed
extensively in Chapter 15.2. Usual maps include Fo maps, �F maps
and �nFo � mFc� maps. The Fourier coefficients used to compute
the maps should be weighted by estimates of the degree of bias as
described in Chapter 15.2. While �F maps are very useful in
highlighting areas in the maps that reflect the greatest difference
between the Fo’s and Fc’s in Fourier space, they do not show the
electron density of the unit cell. Positive and negative regions of a
�F map may be the result of positional errors of an atom or group of
atoms, B-factor errors, completely misplaced atoms or missing
atoms. Fo maps show the electron density but are biased by the
current model. A �2Fo � Fc� map is a combination of an Fo map
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