International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossman and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 18.1, p. 372   | 1 | 2 |

Section 18.1.8.2. Normal equations

L. F. Ten Eycka* and K. D. Watenpaughb

a San Diego Supercomputer Center 0505, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0505, USA, and bStructural, Analytical and Medicinal Chemistry, Pharmacia & Upjohn, Inc., Kalamazoo, MI 49001-0119, USA
Correspondence e-mail:  lteneyck@sdsc.edu

18.1.8.2. Normal equations

| top | pdf |

In matrix form, the observational equations are written as [ {\bf A}\Delta = {\bf r},] where A is the M by N matrix of derivatives, Δ is the parameter shifts and r is the vector of residuals given on the left-hand sides of equation (18.1.8.1[link]). The normal equations are formed by multiplying both sides of the equation by [{\bf A}^{T}]. This produces an N by N square system, the solution to which is the desired least-squares solution for the parameter shifts. [ \displaylines{{\bf A}^{T} {\bf A}\Delta = {\bf A}^{T} {\bf r} \hbox{ or } {\bf M}\Delta = {\bf b},\quad \cr m_{ij} = \sum\limits_{k = 1}^{M} w_{k} \left({\partial f_{k} ({\bf x}) \over \partial x_{i}}\right) \left({\partial f_{k} ({\bf x}) \over \partial x_{j}}\right),\cr b_{i} = \sum\limits_{k = 1}^{M} w_{k} [y_{k} - f_{k} ({\bf x})] \left({\partial f_{k} ({\bf x}) \over \partial x_{i}}\right). } ] Similar equations are obtained by expanding (18.1.4.1)[link] as a second-order Taylor series about the minimum [{\bf x}_{0}] and differentiating. [ \eqalignno{\Phi ({\bf x} - {\bf x}_{0}) &\approx \Phi ({\bf x}_{0}) + \Bigg \langle \left({\partial \Phi \over \partial x_{i}}\right)_{{\bf x}_{0}} \Bigg|({\bf x} - {\bf x}_{0})\Bigg \rangle &\cr&{\phantom\approx}+ {1 \over 2} \Bigg \langle ({\bf x} - {\bf x}_{0})\Bigg| \left({\partial^{2} \Phi \over \partial x_{i} \partial x_{j}}\right)_{{\bf x}_{0}} \Bigg|({\bf x} - {\bf x}_{0}) \Bigg \rangle , &\cr\bigg| \left({\partial \Phi \over \partial {\bf x}} \right) \Bigg \rangle &\approx \Bigg| \left({\partial^{2} \Phi \over \partial x_{i} \partial x_{j}}\right)_{{\bf x}_{0}} \Bigg|({\bf x} - {\bf x}_{0}) \Bigg \rangle . }] The second-order approximation is equivalent to assuming that the matrix of second derivatives does not change and hence can be computed at x instead of at [{\bf x}_{0}].








































to end of page
to top of page