
18.2. Enhanced macromolecular refinement by simulated annealing

BY A. T. BRUNGER, P. D. ADAMS AND L. M. RICE

18.2.1. Introduction

The analysis of X-ray diffraction data generally requires sophisti-
cated computational procedures that culminate in refinement and
structure validation. The refinement procedure can be formulated as
the chemically constrained or restrained nonlinear optimization of a
target function, which usually measures the agreement between
observed diffraction data and data computed from an atomic model.
The ultimate goal of refinement is to optimize simultaneously the
agreement of an atomic model with observed diffraction data and
with a priori chemical information.

The target function used for this optimization normally depends
on several atomic parameters and, most importantly, on atomic
coordinates. The large number of adjustable parameters (typically at
least three times the number of atoms in the model) gives rise to a
very complicated target function. This, in turn, produces what is
known as the multiple minima problem: the target function contains
many local minima in addition to the global minimum, and this
tends to defeat gradient-descent optimization techniques such as
conjugate gradient or least-squares methods (Press et al., 1986).
These methods are unable to sample molecular conformations
thoroughly enough to find the optimal model if the starting one is far
from the correct structure.

The challenges of crystallographic refinement arise not only from
the high dimensionality of the parameter space, but also from the
phase problem. For new crystal structures, initial electron-density
maps must be computed from a combination of observed diffraction
amplitudes and experimental phases, where the latter are typically
of poorer quality and/or at a lower resolution than the former. A
different problem arises when structures are solved by molecular
replacement (Hoppe, 1957; Rossmann & Blow, 1962), which uses a
similar structure as a search model to calculate initial phases. In this
case, the resulting electron-density maps can be severely ‘model-
biased’, that is, they sometimes seem to confirm the existence of the
search model without providing clear evidence of actual differences
between it and the true crystal structure. In both cases, initial atomic
models usually contain significant errors and require extensive
refinement.

Simulated annealing (Kirkpatrick et al., 1983) is an optimization
technique particularly well suited to overcoming the multiple
minima problem. Unlike gradient-descent methods, simulated
annealing can cross barriers between minima and, thus, can explore
a greater volume of the parameter space to find better models
(deeper minima). Following its introduction to crystallographic
refinement (Brünger et al., 1987), there have been major
improvements of the original method in four principal areas: the
measure of model quality, the search of the parameter space, the
target function and the modelling of conformational variability.

For crystallographic refinement, the introduction of cross
validation and the free R value (Brünger, 1992) has significantly
reduced the danger of overfitting the diffraction data during
refinement. Cross validation also produces more realistic coordi-
nate-error estimates based on the Luzzati or �A methods (Kleywegt
& Brünger, 1996). The complexity of the conformational space has
been reduced by the introduction of torsion-angle refinement
methods (Diamond, 1971; Rice & Brünger, 1994), which decrease
the number of adjustable parameters that describe a model
approximately tenfold. The target function has been improved by
using a maximum-likelihood approach which takes into account
model error, model incompleteness and errors in the experimental
data (Bricogne, 1991; Pannu & Read, 1996). Cross validation of
parameters for the maximum-likelihood target function was
essential in order to obtain better results than with conventional

target functions (Pannu & Read, 1996; Adams et al., 1997; Read,
1997). Finally, the sampling power of simulated annealing has been
used for exploring the molecule’s conformational space in cases
where the molecule undergoes dynamic motion or exhibits static
disorder (Kuriyan et al., 1991; Burling & Brünger, 1994; Burling et
al., 1996).

18.2.2. Cross validation

Cross validation (Brünger, 1992) plays a fundamental role in the
maximum-likelihood target functions described below. A few
remarks about this method are therefore warranted (for reviews
see Kleywegt & Brünger, 1996; Brünger, 1997). For cross
validation, the diffraction data are divided into two sets: a large
working set (usually comprising 90% of the data) and a
complementary test set (comprising the remaining 10%). The
diffraction data in the working set are used in the normal
crystallographic refinement process, whereas the test data are not.
The cross-validated (or ‘free’) R value computed with the test-set
data is a more faithful indicator of model quality. It provides a more
objective guide during the model building and refinement process
than the conventional R value. It also ensures that introduction of
additional parameters (e.g. water molecules, relaxation of non-
crystallographic symmetry restraints, or multi-conformer models)
improves the quality of the model, rather than increasing overfitting.

Since the conventional R value shows little correlation with the
accuracy of a model, coordinate-error estimates derived from the
Luzzati (1952) or �A (Read, 1986) methods are unrealistically low.
Kleywegt & Brünger (1996) showed that more reliable coordinate
errors can be obtained by cross validation of the Luzzati or �A
coordinate-error estimates. An example is shown in Fig. 18.2.2.1
using the crystal structure and diffraction data of penicillopepsin
(Hsu et al., 1977). At 1.8 Å resolution, the model has an estimated
coordinate error of �0.2 Å as assessed by multiple independent
refinements. As the resolution of the diffraction data is artificially
truncated and the model re-refined, the coordinate error (assessed by
the atomic root-mean-square difference to the refined model at
1.8 Å resolution) increases monotonically. The conventional R
value improves as the resolution decreases and the quality of the
model worsens. Consequently, coordinate-error estimates do not
display the correct behaviour either: the error estimates are
approximately constant, regardless of the resolution and actual
coordinate error of the models. However, when cross validation is
used (i.e., the test reflections are used to compute the estimated
coordinate errors), the results are much better: the cross-validated
errors are close to the actual coordinate error, and they show the
correct trend as a function of resolution (Fig. 18.2.2.1).

18.2.3. The target function

Crystallographic refinement is a search for the global minimum of
the target

E � Echem � wX-rayEX-ray �18�2�3�1�
as a function of the parameters of an atomic model, in particular,
atomic coordinates. Echem comprises empirical information about
chemical interactions; it is a function of all atomic positions,
describing covalent (bond lengths, bond angles, torsion angles,
chiral centres and planarity of aromatic rings) and non-bonded
(intramolecular as well as intermolecular and symmetry-related)
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interactions (Hendrickson, 1985). EX-ray is related to the difference
between observed and calculated data, and wX-ray is a weight
appropriately chosen to balance the gradients (with respect to
atomic parameters) arising from the two terms.

18.2.3.1. X-ray diffraction data versus model

The traditional form of EX-ray consists of the crystallographic
residual, ELSQ, defined as the sum over the squared differences
between the observed ��Fo�� and calculated ��Fc�� structure-factor

amplitudes for a particular atomic model:

EX-ray � ELSQ � �

hkl�working set
��Fo� � k�Fc��2, �18�2�3�2�

where hkl are the indices of the reciprocal-lattice points of the
crystal and k is a relative scale factor.

Minimization of ELSQ can produce improvement in the atomic
model, but it can also accumulate systematic errors in the model by
fitting noise in the diffraction data (Silva & Rossmann, 1985). The
least-squares residual is a limiting case of the more general
maximum-likelihood theory and is only justified if the model is
nearly complete and error-free. These assumptions may be violated
during the initial stages of refinement. Improved targets for
macromolecular refinement have been obtained using the more
general maximum-likelihood formulation (Bricogne, 1991; Pannu
& Read, 1996; Adams et al., 1997; Murshudov et al., 1997). The
goal of the maximum-likelihood method is to determine the
likelihood of the model, given estimates of the model’s errors and
those of the measured intensities.

A starting point for the maximum-likelihood formulation of
crystallographic refinement is the Sim (1959) distribution, i.e., the
Gaussian conditional probability distribution of the ‘true’ structure
factors, F, given a partial model with structure factors Fc and the
model’s error (Fig. 18.2.3.1) (Srinivasan, 1966; Read, 1986, 1990)
(for simplicity we will only discuss the case of acentric reflections),

Pa�F; Fc� � �1����2
�� exp	��F� DFc�2���2

�
, �18�2�3�3�
where �� is a parameter that incorporates the effect of the fraction
of the asymmetric unit that is missing from the model and errors in
the partial structure. Assuming a Wilson distribution of intensities,
it can be shown that (Read, 1990)

�2
� � ��Fo�2� � D2��Fc�2�, �18�2�3�4�

where D is a factor that takes into account model error: it is unity in
the limiting case of an error-free model and it is zero if no model is
available (Luzzati, 1952; Read, 1986). For a complete and error-
free model, �� therefore becomes zero, and the probability
distribution, Pa�F; Fc�, is infinitely sharp.

Fig. 18.2.2.1. Effect of resolution on coordinate-error estimates: accuracy
as a function of resolution. Refinements were begun with the crystal
structure of penicillopepsin (Hsu et al., 1977) with water molecules
omitted and with uniform temperature factors. The low-resolution limit
was set to 6 Å. Inclusion of all low-resolution diffraction data does not
change the conclusions (Adams et al., 1997). The penicillopepsin
diffraction data were artificially truncated to the specified high-
resolution limit. Each refinement consisted of simulated annealing
using a Cartesian-space slow-cooling protocol starting at 2000 K,
overall B-factor refinement and individual restrained B-factor refine-
ment. All refinements were carried out with 10% of the diffraction data
randomly omitted for cross validation. (a) Coordinate-error estimates of
the refined structures using the methods of Luzzati (1952) and Read
(1986). All observed diffraction data were used, i.e. no cross validation
was performed. The actual coordinate errors (r.m.s. differences to the
original crystal structure) are shown for comparison. (b) Cross-validated
coordinate-error estimates. The test set was used to compute the
coordinate-error estimates (Kleywegt & Brünger, 1996).

Fig. 18.2.3.1. The Gaussian probability distribution forms the basis of
maximum-likelihood targets in crystallographic refinement. The
conditional probability of the true structure factor, F, given model
structure factors, is a Gaussian in the complex plane [equation
(18.2.3.3)]. The expected value of the probability distribution is DFc
with variance ��, where D and �� account for missing or incorrectly
placed atoms in the model.
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Taking measurement errors into account requires multiplication
of equation (18.2.3.3) with an appropriate probability distribution
(usually a conditional Gaussian distribution with standard deviation
�o) of the observed structure-factor amplitudes ��Fo�� around the
‘true’ structure-factor amplitudes ��F��,

Pmeas��Fo�; �F��� �18�2�3�5�
Prior knowledge of the phases of the structure factors can be

incorporated by multiplying equation (18.2.3.3) with a phase
probability distribution

Pphase��� �18�2�3�6�
and rewriting equation (18.2.3.3) in terms of the structure-factor
moduli and amplitudes of F � �F� exp�i��.

The unknown variables �F� and � in equations (18.2.3.3)–
(18.2.3.5) have to be eliminated by integration in order to obtain the
conditional probability distribution of the observed structure-factor
amplitudes, given a partial model with errors, the amplitude
measurement errors and prior phase information:

Pa��Fo�; Fc� � �1����2
��
�

d� d�F� �F�Pmeas��Fo�; �F��

 Pphase��� exp �	�F� exp�i�� � DFo
2���2

�

� �
�

�18�2�3�7�
The likelihood, �, of the model is defined as the joint probability

distribution of the structure factors of all reflections in the working
set. Assuming independent and uncorrelated structure factors, � is
simply the product of the distributions in equation (18.2.3.7) for all
reflections. Instead of maximizing the likelihood, it is more
common to minimize the negative logarithm of the likelihood,

EX-ray � � � �
�

hkl�working set
log	Pa��Fo�; Fc�
� �18�2�3�8�

Empirical estimates of �� [and D through equation (18.2.3.4)]
can be obtained by minimizing � for a particular atomic model. It is
generally assumed that �� and D show relatively little variation
among neighbouring reflections. Accepting this assumption, �� and
D can be estimated by considering narrow resolution shells of
reflections and assuming that the two parameters are constant in
these shells. Minimization of � can then be performed as a function
of these constant shell parameters while keeping the atomic model
fixed (Read, 1986, 1997). Alternatively, one can assume a two-term
Gaussian model for �� (Murshudov et al., 1997) and minimize � as
a function of the Gaussian parameters. Note that individual atomic
B factors are taken into account by the calculated model structure
factors �Fc�.

This empirical approach to estimate �� and D requires
occasional recomputation of these values as the model improves.
Refinement methods that improve the model structure factors, Fc,
will therefore have a beneficial effect on �� and D. Better estimates
of these values will then enhance the next refinement cycle. Thus,
powerful optimization methods and maximum-likelihood targets
are expected to interact in a synergistic fashion (cf. Fig. 18.2.5.1).
Structure-factor averaging of multi-start refinement models can
provide another layer of improvement by producing a better
description of Fc if the model shows significant variability due to
errors or intrinsic flexibility (see below).

In order to achieve an improvement over the least-squares
residual [equation (18.2.3.2)], cross validation was found to be
essential (Pannu & Read, 1996; Adams et al., 1997) for the
estimation of model incompleteness and errors (�� and D). Since
the test set typically contains only 10% of the diffraction data, these
cross-validated quantities can show significant statistical fluctua-
tions as a function of resolution. In order to reduce these
fluctuations, Read (1997) devised a smoothing method by applying

restraints to �A values between neighbouring resolution shells
where

�A � 1� ������Fo�2��
� �1�2

� �18�2�3�9�
Pannu & Read (1996) have developed an efficient Gaussian

approximation of equation (18.2.3.7) in cases of no prior phase
information, termed the ‘MLF’ target function. In the limit of a
perfect model (i.e. �� � 0 and D � 1), MLF reduces to the
traditional least-squares residual [equation (18.2.3.2)] with 1��2

o
weighting. In the case of prior phase information, the integration
over the phase angles has been carried out numerically in equation
(18.2.3.7), termed the ‘MLHL’ target (Pannu et al., 1998). A
maximum-likelihood function which expresses equation (18.2.3.7)
in terms of observed intensities has also been developed, termed
‘MLI’ (Pannu & Read, 1996).

18.2.3.2. A priori chemical information

The parameters for the covalent terms in Echem [equation
(18.2.3.1)] can be derived from the average geometry and (r.m.s.)
deviations observed in a small-molecule database. Extensive
statistical analyses were undertaken for the chemical moieties of
proteins (Engh & Huber, 1991) and polynucleotides (Parkinson et
al., 1996) using the Cambridge Structural Database (Allen et al.,
1983). Analysis of the ever-increasing number of atomic resolution
macromolecular crystal structures will no doubt cause some
modifications of these parameters in the future.

It is common to use a purely repulsive quartic function �Erepulsive�
for the non-bonded interactions that are included in Echem
(Hendrickson, 1985):

Erepulsive �
�

ij
	�cRmin

ij �n � Rn
ij
m, �18�2�3�10�

where Rij is the distance between two atoms i and j, Rmin
ij is the van

der Waals radius for a particular atom pair ij, c � 1 is a constant that
is sometimes used to reduce the radii, and n � 2, m � 2 or n � 1,
m � 4. van der Waals attraction and electrostatic interactions are
usually not included in crystallographic refinement. These
simplifications are valid since the diffraction data contain
information that is able to produce atomic conformations consistent
with actual non-bonded interactions. In fact, atomic resolution
crystal structures can be used to derive parameters for electrostatic
charge distributions (Pearlman & Kim, 1990).

18.2.4. Searching conformational space

Annealing denotes a physical process wherein a solid is heated until
all particles randomly arrange themselves in a liquid phase and is
then cooled slowly so that all particles arrange themselves in the
lowest energy state. By formally defining the target, E [equation
(18.2.3.1)], to be the equivalent of the potential energy of the
system, one can simulate such an annealing process (Kirkpatrick et
al., 1983). There is no guarantee that simulated annealing will find
the global minimum (Laarhoven & Aarts, 1987). However,
compared to conjugate-gradient minimization, where search
directions must follow the gradient, simulated annealing achieves
more optimal solutions by allowing motion against the gradient
(Kirkpatrick et al., 1983). The likelihood of uphill motion is
determined by a control parameter referred to as temperature. The
higher the temperature, the more likely it is that simulated annealing
will overcome barriers (Fig. 18.2.4.1). It should be noted that the
simulated-annealing temperature normally has no physical meaning
and merely determines the likelihood of overcoming barriers of the
target function in equation (18.2.3.1).
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The simulated-annealing algorithm requires a mechanism to
create a Boltzmann distribution at a given temperature, T, and an
annealing schedule, that is, a sequence of temperatures T1 � T2 �
� � � � Tl at which the Boltzmann distribution is computed.
Implementations differ in the way they generate a transition, or
move, from one set of parameters to another that is consistent with
the Boltzmann distribution at a given temperature. The two most
widely used methods are Metropolis Monte Carlo (Metropolis et al.,
1953) and molecular dynamics (Verlet, 1967) simulations. For
X-ray crystallographic refinement, molecular dynamics has proven
extremely successful (Brünger et al., 1987) because it limits the
search to physically reasonable ‘moves’.

18.2.4.1. Molecular dynamics

A suitably chosen set of atomic parameters can be viewed as
generalized coordinates that are propagated in time by the classical
equations of motion (Goldstein, 1980). If the generalized
coordinates represent the x, y, z positions of the atoms of a
molecule, the classical equations of motion reduce to the familiar
Newton’s second law:

mi
�2ri

�t2
� ��iE� �18�2�4�1�

The quantities mi and ri are, respectively, the mass and coordinates
of atom i, and E is given by equation (18.2.3.1). The solution of the
partial differential equations (18.2.4.1) can be achieved numerically
using finite-difference methods (Verlet, 1967; Abramowitz &
Stegun, 1968). This approach is referred to as molecular dynamics.

Initial velocities for the integration of equation (18.2.4.1) are
usually assigned randomly from a Maxwell distribution at the
appropriate temperature. Assignment of different initial velocities
will generally produce a somewhat different structure after
simulated annealing. By performing several refinements with

different initial velocities, one can therefore improve the chances
of success of simulated-annealing refinement. Furthermore, this
improved sampling can be used to study discrete disorder and
conformational variability, especially when using torsion-angle
molecular dynamics (see below).

Although Cartesian (i.e. flexible bond lengths and bond angles)
molecular dynamics places restraints on bond lengths and bond
angles [through Echem, equation (18.2.3.1)], one might want to
implement these restrictions as constraints, i.e., fixed bond lengths
and bond angles (Diamond, 1971). This is supported by the
observation that the deviations from ideal bond lengths and bond
angles are usually small in macromolecular X-ray crystal structures.
Indeed, fixed-length constraints have been applied to crystal-
lographic refinement by least-squares minimization (Diamond,
1971). It is only recently, however, that efficient and robust
algorithms have become available for molecular dynamics in
torsion-angle space (Bae & Haug, 1987, 1988; Jain et al., 1993;
Rice & Brünger, 1994). We chose an approach that retains the
Cartesian-coordinate formulation of the target function and its
derivatives with respect to atomic coordinates, so that the
calculation remains relatively straightforward and can be applied
to any macromolecule or their complexes (Rice & Brünger, 1994).
In this formulation, the expression for the acceleration becomes a
function of positions and velocities. Iterative equations of motion
for constrained dynamics in this formulation can be derived and
solved by finite-difference methods (Abramowitz & Stegun, 1968).
This method is numerically very robust and has a significantly
increased radius of convergence in crystallographic refinement
compared to Cartesian molecular dynamics (Rice & Brünger,
1994).

18.2.4.2. Temperature control

Simulated annealing requires the control of the temperature
during molecular dynamics. The current temperature of the
simulation �Tcurr� is computed from the kinetic energy

Ekin �
�n

i

1
2mi

�ri

�t

� 	2

�18�2�4�2�

of the molecular-dynamics simulation,

Tcurr � 2Ekin�3nkB� �18�2�4�3�
Here, n is the number of atoms, mi is the mass of the atom and kB is
Boltzmann’s constant. One commonly used approach to control the
temperature of the simulation consists of coupling the equations of
motion to a heat bath through a ‘friction’ term (Berendsen et al.,
1984). Another approach is to rescale periodically the velocities in
order to match Tcurr with the target temperature.

18.2.4.3. Annealing schedules

The simulated-annealing temperature needs to be high enough to
allow conformational transitions, but not so high that the model
moves too far away from the correct structure. The optimal
temperature for a given starting structure is a matter of trial and
error. Starting temperatures that work for the average case have
been determined for a variety of simulated-annealing protocols
(Brünger, 1988; Adams et al., 1997). However, it might be worth
trying a different temperature if a particularly difficult refinement
problem is encountered. In particular, significantly higher tempera-
tures are attainable using torsion-angle molecular dynamics. Note
that each simulated-annealing refinement is subject to ‘chance’ by
using a random-number generator to generate the initial velocities.
Thus, multiple simulated annealing runs can be carried out in order
to increase the success rate of the refinement. The best structure(s)
(as determined by the free R value) among a set of refinements using

Fig. 18.2.4.1. Illustration of simulated annealing for minimization of a one-
dimensional function. The kinetic energy of the system (a ‘ball’ rolling
on the one-dimensional surface) allows local conformational transitions
with barriers smaller than the kinetic energy. If a larger drop in energy is
encountered, the excess kinetic energy is dissipated. It is thus unlikely
that the system can climb out of the global minimum once it has reached
it.
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different initial velocities and/or temperatures can be taken for
further refinement or structure-factor averaging (see below).

The annealing schedule can, in principle, be any function of the
simulation step (or ‘time’ domain). The two most commonly used
protocols are linear slow-cooling or constant-temperature followed
by quenching. A slight advantage is obtained with slow cooling
(Brünger et al., 1990). The duration of the annealing schedule is
another parameter. Too short a protocol does not allow sufficient
sampling of conformational space. Too long a protocol may waste
computer time, since it is more efficient to run multiple trials than
one long refinement protocol (unpublished results).

18.2.4.4. An intuitive explanation of simulated annealing

The goal of any optimization problem is to find the global
minimum of a target function. In the case of crystallographic
refinement, one searches for the conformation or conformations of
the molecule that best fit the diffraction data and that simulta-
neously maintain reasonable covalent and non-covalent interac-
tions. Simulated-annealing refinement has a much larger radius of
convergence than conjugate-gradient minimization (see below). It
must, therefore, be able to find a lower minimum of the target E
[equation (18.2.3.1)] than the local minimum found by simply
moving along the negative gradient of E.

It is most easy to visualize this property of simulated annealing in
the case of a one-dimensional problem, where the goal is to find the
global minimum of a function with multiple minima (Fig. 18.2.4.1).
An intuitive way to understand a molecular-dynamics simulation is
to envisage a ball rolling on this one-dimensional surface. When the
ball is far from the global minimum, it gains a certain momentum
which allows it to cross barriers of the target function [equation
(18.2.4.3)]. Slow-cooling temperature control ensures that the ball
will eventually reach the global minimum rather than just bouncing
across the surface. The initial temperature must be large enough to
overcome smaller barriers, but low enough to ensure that the system
will not escape the global minimum if it manages to arrive there.

While temperature itself is a global parameter of the system,
temperature fluctuations arise principally from local conformational
transitions, for example, from an amino-acid side chain falling into
the correct orientation. These local changes tend to lower the value
of the target E, thus increasing the kinetic energy, and hence the
temperature, of the system. Once the temperature control has
removed this excess kinetic energy through ‘heat dissipation’, the
reverse transition is very unlikely, since it would require a localized
increase in kinetic energy where the conformational change
occurred in the first place (Fig. 18.2.4.1). Temperature control
maintains a sufficient amount of kinetic energy to allow local
conformational corrections, but does not supply enough to allow
escape from the global minimum. This explains the observation
that, on average, the agreement with the diffraction data will
improve, rather than worsen, with simulated annealing.

18.2.5. Examples

Many examples have shown that simulated-annealing refinement
starting from initial models (obtained by standard crystallographic
techniques) produces significantly better final models compared to
those produced by least-squares or conjugate-gradient minimization
(Brünger et al., 1987; Brünger, 1988; Fujinaga et al., 1989; Kuriyan
et al., 1989; Rice & Brünger, 1994; Adams et al., 1997). In another
realistic test case (Adams et al., 1999), a series of models for the
aspartic proteinase penicillopepsin were generated from homo-
logous structures present in the Protein Data Bank. The sequence
identity among these structures ranged from 100% to 25%, thus
providing a set of models with increasing coordinate error
compared to the refined structure of penicillopepsin. These models,

after truncation of all residues to alanine, were all used as search
models in molecular replacement against the native penicillopepsin
diffraction data. In all cases, the correct placement of the model in
the penicillopepsin unit cell was found.

Both conjugate-gradient minimization and simulated annealing
were carried out in order to compare the performance of the ELSQ

least-squares residual [equation (18.2.3.2)], MLF (the maximum-
likelihood target using amplitudes) and MLHL (the maximum-
likelihood target using amplitudes and experimental phase
information). In the latter case, phases from single isomorphous
replacement (SIR) were used. A very large number of conjugate-
gradient cycles were carried out in order to make the computational
requirements equivalent for both minimization and simulated
annealing. The conjugate-gradient minimizations were converged,
i.e. there was no change when further cycles were carried out.

For a given target function, simulated annealing always out-
performed minimization (Fig. 18.2.5.1). For a given starting model,
the maximum-likelihood targets outperformed the least-squares-
residual target for both minimization and simulated annealing,
producing models with lower phase errors and higher map
correlation coefficients when compared with the published
penicillopepsin crystal structure (Fig. 18.2.5.1). This improvement
is illustrated in �A-weighted electron-density maps obtained from
the resulting models (Fig. 18.2.5.2). The incorporation of
experimental phase information further improved the refinement
significantly despite the ambiguity in the SIR phase probability
distributions. Thus, the most efficient refinement will make use of
simulated annealing and phase information in the MLHL
maximum-likelihood target function.

Fig. 18.2.5.1. Simulated annealing produces better models than extensive
conjugate-gradient minimization. Map correlation coefficients were
computed before and after refinement against the native penicillopepsin
diffraction data (Hsu et al., 1977) for the polyalanine model derived
from Rhizopuspepsin (Suguna et al., 1987, PDB code 2APR).
Correlation coefficients are between �A-weighted maps calculated
from each model and from the published penicillopepsin structure.
The observed penicillopepsin diffraction data were in space group C2
with cell dimensions a � 97�37, b � 46�64, c � 65�47 Å and
� � 115�4�. All refinements were carried out using diffraction data
from the lowest-resolution limit of 22.0 Å up to 2.0 Å. The MLHL
refinements used single isomorphous phases from a K3UO2F5 derivative
of the penicillopepsin crystal structure, which covered a resolution
range of 22.0 Å to 2.8 Å. Simulated-annealing refinements were
repeated five times with different initial velocities. The numerical
averages of the map correlation coefficients for the five refinements are
shown as hashed bars. The best map correlation coefficients from
simulated annealing are shown as white bars.
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Cross validation is essential in the calculation of the maximum-
likelihood target (Kleywegt & Brünger, 1996; Pannu & Read, 1996;
Adams et al., 1997). Maximum-likelihood refinement without cross
validation gives much poorer results, as indicated by higher free R
values, Rfree � R differences and phase errors (Adams et al., 1997).
It should be noted that the final normal R value is in general
increased, compared to refinements with the least-squares target,
when using the cross-validated maximum-likelihood formulation.
This is a consequence of the reduction of overfitting by this method.

18.2.6. Multi-start refinement and structure-factor
averaging

Multiple simulated-annealing refinements starting from the same
model, termed ‘multi-start’ refinement, will generally produce
somewhat different structures. Even well refined structures will
show some variation consistent with the estimated coordinate error
of the model (cf. results for 1.8 Å resolution in Fig. 18.2.2.1). More
importantly, the poorer the model, the more variation is observed
(Brünger, 1988). Some of the models resulting from multi-start
refinement may be better than others, for example, as judged by the
free R value. Thus, if computer time is available, multi-start
refinement has several advantages. A more optimal single model
than that produced by a single simulated-annealing calculation can
usually be obtained. Furthermore, each separate model coming from
a multi-start refinement fits the data slightly differently. This could
be the result of intrinsic flexibility in the molecule (see below) or the
result of model-building error. Regions in the starting model that
contain significant errors often show increased variability after
multi-start refinement, and a visual inspection of the ensemble of
models produced can be helpful in identifying these incorrectly
modelled regions.

To better identify the correct conformation, structure factors
from each of the models can be averaged (Rice et al., 1998). This
averaging tends to reduce the effect of local errors (noise) that are
presumably different in each member of the family. The average
structure factor can produce phases that contain less model bias than
phases computed from a single model. It should also produce better

estimates of �� and D for maximum-likelihood targets and for �A-
weighted electron-density maps, because Fc is used in the
computation of these parameters [equation (18.2.3.7)]. Because it
is inherently a noise-reducing technique, multi-start refinement
followed by structure-factor averaging should be most useful in
situations where there is significant noise, namely when the data-to-
parameter ratio is low (e.g. if only moderate-resolution diffraction
data are available).

18.2.7. Ensemble models

In cases of conformational variability or discrete disorder, there is
not one single correct solution to the global minimization of
equation (18.2.3.1). Rather, the X-ray diffraction data represent a
spatial and temporal average over all conformations that are
assumed by the molecule. Ensembles of structures, which are
simultaneously refined against the observed data, may thus be a
more appropriate description of the diffraction data. This has been
used for some time when alternate conformations are modelled
locally. Alternate conformations can be generalized to global
conformations (Gros et al., 1990; Kuriyan et al., 1991; Burling &
Brünger, 1994), i.e., the model is duplicated n-fold, the calculated
structure factors corresponding to each copy of the model are
summed, and this composite structure factor is refined against the
observed X-ray diffraction data. Each member of the family is
chemically ‘invisible’ to all other members. The optimal number, n,
can be determined by cross validation (Burling & Brünger, 1994;
Burling et al., 1996).

An advantage of a multi-conformer model is that it directly
incorporates many possible types of disorder and motion (global
disorder, local side-chain disorder, local wagging and rocking
motions). Furthermore, it can be used to detect automatically the
most variable regions of the molecule by inspecting the atomic
r.m.s. difference around the mean as a function of residue number.
Thermal factors of single-conformer models may sometimes be
misleading because they underestimate the degree of motion or
disorder (Kuriyan et al., 1986), and, thus, the multiple-conformer
model can be a more faithful representation of the diffraction data.

A disadvantage of the multi-conformer
model is that it introduces many more
parameters in the refinement.

Although there are some similarities
between averaging structure factors of
individually refined structures and per-
forming multi-conformer refinement,
there are also fundamental differences.
For example, multi-start averaging seeks
to improve the calculated electron-density
map by averaging out the noise present in
the individual models, each of which is still
a good representation of the diffraction
data. This method is most useful at the
early stages of refinement when the model
still contains errors. In contrast, multi-
conformer refinement seeks to create an
ensemble of structures at the final stages of
refinement which, taken together, best
represent the data. It should be noted that
each individual conformer of the ensemble
does not necessarily remain a good
description of the diffraction data, since
the whole ensemble is refined against the
data. Clearly, multi-conformer refinement
requires a high observable-to-parameter
ratio.

Fig. 18.2.5.2. Maximum-likelihood targets significantly decrease model bias in simulated-annealing
refinement. �A-weighted electron-density maps contoured at 1�25� for models from simulated-
annealing refinement with different targets are shown. Residues 233 to 237 are shown for the
published penicillopepsin crystal structure (Hsu et al., 1977) as solid lines, and for the model with
the lowest free R value from five independent refinements as dashed lines.
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18.2.8. Conclusions

Simulated annealing has dramatically improved the efficiency of
crystallographic refinement. A case in point is the combination of
torsion-angle molecular dynamics with cross-validated maximum-
likelihood targets. These two independent developments interact
synergistically to produce less model bias than any other method to
date. The combined method dramatically increases the radius of
convergence, allowing the productive refinement of poor initial
models, e.g. those obtained by weak molecular-replacement
solutions (Rice & Brünger, 1994; Adams et al., 1997, 1999).

Simulated annealing can also be used to provide new physical
insights into molecular function which may depend on conforma-
tional variability. The sampling characteristics of simulated
annealing allow the generation of multi-conformer models that
can represent molecular motion and discrete disorder, especially

when combined with the acquisition of high-quality data (Burling et
al., 1996). Thus, simulated annealing is also a stepping stone
towards development of improved models of macromolecules in
solution and in the crystalline state.

The computational developments discussed in this review are
implemented in the software suite Crystallography & NMR System
(Brunger et al., 1998). A pre-release of the software suite is
available upon request.
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�LS, Luzz�r� � 1�33�Ni�p�1�2	R�sm��sm
, �18�5�8�3�
where R�sm� is the value of R at some value of s � sm on the
selected Luzzati curve. Equation (18.5.8.3) provides a means of
making a very rough statistical estimate of error for an atom with
B � Bavg (the average B for fully occupied sites) from a plot of R
versus 2 sin 	�
.

The corresponding equation involving Rfree is

�LS, Luzz�r� � 1�33�Ni�nobs�1�2	Rfree�sm��sm
� �18�5�8�4�

18.5.8.3. Comments on Luzzati plots

Protein structures always show a great range of B values. The
Luzzati theory effectively assumes that all atoms have the same B.

Nonetheless, the Luzzati method applied to high-angle data shells
does provide an upper limit for ��r� for the atoms with low B. It is
an upper limit since experimental errors and model imperfections
are not allowed for in the theory.

Low-resolution structures can be determined validly by using
restraints, even though the number of diffraction observations is less
than the number of atomic coordinates. The Luzzati method, based
preferably on Rfree, can be applied to the atoms of low B in such
structures. As the number of observations increases, and the
resolution improves, the Luzzati ��r� increasingly overestimates
the true ��r� of the low-B atoms.

In the use of Luzzati plots, the method of refinement, and its
degree of convergence, is irrelevant. A Luzzati plot is a statement
for the low-B atoms about the maximum errors associated with a
given structure, whether converged or not.
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Berman, H. M. (1996). New parameters for the refinement of
nucleic acid-containing structures. Acta Cryst. D52, 57–64.

Pearlman, D. A. & Kim, S.-H. (1990). Atomic charges for DNA
constituents derived from single-crystal X-ray diffraction data. J.
Mol. Biol. 211, 171–187.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T.
(1986). Editors. Numerical recipes, pp. 498–546. Cambridge
University Press.

Read, R. J. (1986). Improved Fourier coefficients for maps using phases
from partial structures with errors. Acta Cryst. A42, 140–149.

Read, R. J. (1990). Structure-factor probabilities for related
structures. Acta Cryst. A46, 900–912.

Read, R. J. (1997). Model phases: probabilities and bias. Methods
Enzymol. 278, 110–128.
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