International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 18.2, p. 378   | 1 | 2 |

Figure 18.2.4.1 

A. T. Brunger,a* P. D. Adamsb and L. M. Ricec

a The Howard Hughes Medical Institute, and Departments of Molecular and Cellular Physiology, Neurology and Neurological Sciences, and Stanford Synchrotron Radiation Laboratory, Stanford Universty, 1201 Welch Road, MSLS P210, Stanford, CA 94305-5489, USA,bThe Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA, and cDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
Correspondence e-mail:  axel.brunger@stanford.edu

[Figure 18.2.4.1]
Figure 18.2.4.1

Illustration of simulated annealing for minimization of a one-dimensional function. The kinetic energy of the system (a `ball' rolling on the one-dimensional surface) allows local conformational transitions with barriers smaller than the kinetic energy. If a larger drop in energy is encountered, the excess kinetic energy is dissipated. It is thus unlikely that the system can climb out of the global minimum once it has reached it.