International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 18.4, p. 395   | 1 | 2 |

Section 18.4.2.2. Anisotropic scaling

Z. Dauter,a* G. N. Murshudovb and K. S. Wilsonc

a National Cancer Institute, Brookhaven National Laboratory, Building 725A-X9, Upton, NY 11973, USA,bStructural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England, and CLRC, Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, England, and cStructural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, England
Correspondence e-mail:  dauter@bnl.gov

18.4.2.2. Anisotropic scaling

| top | pdf |

The intensity data from a crystal may display anisotropy, i.e., the intensity fall-off with resolution will vary with direction, and may be much higher along one crystal axis than along another. If the structure is to be refined with an isotropic atomic model (either because there are insufficient data or the programs used cannot handle anisotropic parameters), then the fall-off of the calculated [F^{2}] values will, of necessity, also be isotropic. In this situation, an improved agreement between observed and calculated [F^{2}] values can be obtained either by using anisotropic scaling during data reduction to the expected Wilson distribution of intensities, or by including a maximum of six overall anisotropic parameters during refinement. This will result in an isotropic set of [F^{2}] values. For crystals with a high degree of anisotropy in the experimental data, this can lead to a substantial drop of several per cent in R and Rfree (Sheriff & Hendrickson, 1987[link]; Murshudov et al., 1998[link]).

This ambiguity effectively disappears with use of an anisotropic atomic model. The individual ADPs, including contributions from both static and thermal disorder, take up relative individual displacements, but also the overall anisotropy of the experimental [F^{2}] values. The significance of the overall anisotropy is a point of some contention, and its physical meaning is not clear. It may represent asymmetric crystal imperfection or anisotropic overall displacement of molecules in the lattice related to TLS parameters. Refinement of TLS parameters, which can be performed using, for example, RESTRAIN (Driessen et al., 1989[link]), removes the overall crystal contribution to the ADP.

References

First citation Driessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. & Moss, D. S. (1989). RESTRAIN: restrained structure-factor least-squares refinement program for macromolecular structures. J. Appl. Cryst. 22, 510–516.Google Scholar
First citation Murshudov, G. N., Davies, G. J., Isupov, M., Krzywda, S. & Dodson, E. J. (1998). The effect of overall anisotropic scaling in macromolecular refinement. In CCP4 newsletter on protein crystallography, 35, 37–42.Google Scholar
First citation Sheriff, S. & Hendrickson, W. A. (1987). Description of overall anisotropy in diffraction from macromolecular crystals. Acta Cryst. A43, 118–121. Google Scholar








































to end of page
to top of page