International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 18.5, p. 404   | 1 | 2 |

Section 18.5.2.1. The normal equations

D. W. J. Cruickshanka*

a Chemistry Department, UMIST, Manchester M60 1QD, England
Correspondence e-mail: dwj_cruickshank@email.msn.com

18.5.2.1. The normal equations

| top | pdf |

In the unrestrained least-squares method, the residual [R = \textstyle\sum\limits_{3}\displaystyle w(hkl)\Delta^{2} (hkl) \eqno(18.5.2.1)] is minimized, where Δ is either [|F_{o}| - |F_{c}|] for [R_{1}] or [|F_{o}|^{2} - |F_{c}|^{2}] for [R_{2}], and w(hkl) is chosen appropriately. The summation is over crystallographically independent planes.

When R is a minimum with respect to the parameter [u_{j}], [\partial R/\partial u_{j} = 0], i.e., [\textstyle\sum\limits_{3}\displaystyle w\Delta (\partial \Delta / \partial u_{j}) = 0. \eqno(18.5.2.2)] For [R_{1}], [\partial \Delta / \partial u_{j} = -\partial |F_{c}|/\partial u_{j}]; for [R_{2}], [\partial \Delta / \partial u_{j} =] [-2|F_{c}|\partial |F_{c}|/ \partial u_{j}]. The n parameters have to be varied until the n conditions (18.5.2.2)[link] are satisfied. For a trial set of the [u_{j}] close to the correct values, we may expand Δ as a function of the parameters by a Taylor series to the first order. Thus for [R_{1}], [\Delta ({\bf u} + {\bf e}) = \Delta ({\bf u}) - \textstyle\sum\limits_{i}\displaystyle \varepsilon_{i} (\partial |F_{c}|/ \partial u_{i}), \eqno(18.5.2.3)] where [\varepsilon_{i}] is a small change in the parameter [u_{i}], and u and e represent the whole sets of parameters and changes. The minus sign occurs before the summation, since [\Delta = |F_{o}| - |F_{c}|], and the changes in [|F_{c}|] are being considered.

Substituting (18.5.2.3)[link] in (18.5.2.2)[link], we get the normal equations for [R_{1}], [\openup6pt\displaylines{\textstyle\sum\limits_{i}\displaystyle \varepsilon_{i} \left[\textstyle\sum\limits_{3}\displaystyle w(\partial |F_{c}|/ \partial u_{i}) (\partial |F_{c}|/ \partial u_{j})\right] \cr\hfill= \textstyle\sum\limits_{3}\displaystyle w\Delta (\partial |F_{c}|/ \partial u_{j}).\hfill (18.5.2.4)}] There are n of these equations for [j = 1,\ldots, n] to determine the n unknown [\varepsilon_{j}].

For [R_{2}] the normal equations are [\openup6pt\displaylines{\textstyle\sum\limits_{i}\displaystyle \varepsilon_{i} \left[\textstyle\sum\limits_{3}\displaystyle w(\partial |F_{c}|^{2} / \partial u_{i}) (\partial |F_{c}|^{2} / \partial u_{j})\right] \cr\hfill= \textstyle\sum\limits_{3}\displaystyle w\Delta (\partial |F_{c}|^{2} / \partial u_{j}). \hfill(18.5.2.5)}] Both forms of the normal equations can be abbreviated to [\textstyle\sum\limits_{i}\displaystyle \varepsilon_{i} a_{ij} = b_{j}. \eqno(18.5.2.6)]

For the values of [\partial |F_{c}| / \partial u_{j}] for common parameters see, e.g., Cruickshank (1970)[link].

Some important points in the derivation of the standard uncertainties of the refined parameters can be most easily understood if we suppose that the matrix [a_{ij}] can be approximated by its diagonal elements. Each parameter is then determined by a single equation of the form [\varepsilon_{i} \textstyle\sum\limits_{3}\displaystyle wg^{2} = \textstyle\sum\limits_{3}\displaystyle wg\Delta, \eqno(18.5.2.7)] where [g = \partial |F_{c}| / \partial u_{i}] or [\partial |F_{c}|^{2} / \partial u_{i}]. Hence [\varepsilon_{i} = \left(\textstyle\sum\limits_{3}\displaystyle wg\Delta \right)\bigg/ \left(\textstyle\sum\limits_{3}\displaystyle wg^{2}\right). \eqno(18.5.2.8)] At the conclusion of the refinement, when R is a minimum, the variance (square of the s.u.) of the parameter [u_{i}] due to uncertainties in the Δ's is [\sigma_{i}^{2} = \left[\textstyle\sum\limits_{3}\displaystyle w^{2}g^{2}\sigma^{2}(F)\right] \bigg/ \left(\textstyle\sum\limits_{3}\displaystyle wg^{2}\right)^{2}. \eqno(18.5.2.9)] If the weights have been chosen as [w(hkl) = 1 / \sigma^{2}(|F_{hkl}|)] or [1 / \sigma^{2} (|F_{hkl}|^{2})], this simplifies to [\sigma_{i}^{2} = 1 \bigg/ \left(\textstyle\sum\limits_{3}\displaystyle wg^{2}\right) = 1 / a_{ii}, \eqno(18.5.2.10)] which is appropriate for absolute weights. Equation (18.5.2.10)[link] provides an s.u. for a parameter relative to the s.u.'s [\sigma (|F|)] or [\sigma (|F|^{2})] of the observations.

In general, with the full matrix [a_{ij}] in the normal equations, [\sigma_{i}^{2} = (a^{-1})_{ii}, \eqno(18.5.2.11)] where [(a^{-1})_{ii}] is an element of the matrix inverse to [a_{ij}]. The covariance of the parameters [u_{i}] and [u_{j}] is [\hbox{cov} (i, j) \equiv \sigma_{i}\sigma_{j}\hbox{correl} (i, j) = (a^{-1})_{ij}. ]

References

First citation Cruickshank, D. W. J. (1970). Least-squares refinement of atomic parameters. In Crystallographic computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 187–196. Copenhagen: Munksgaard.Google Scholar








































to end of page
to top of page