International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.2, pp. 423-427   | 1 | 2 |
https://doi.org/10.1107/97809553602060000699

Chapter 19.2. Electron diffraction of protein crystals

W. Chiua*

aVerna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
Correspondence e-mail: wah@bcm.tmc.edu

References

First citation Amos, L. A., Henderson, R. & Unwin, P. N. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39, 183– 231.Google Scholar
First citation Auer, M., Scarborough, G. A. & Kühlbrandt, W. (1998). Three-dimensional map of the plasma membrane H+-ATPase in the open conformation. Nature (London), 392, 840–843.Google Scholar
First citation Baldwin, J. & Henderson, R. (1984). Measurement and evaluation of electron diffraction patterns from two-dimensional crystals. Ultramicroscopy, 14, 319–336.Google Scholar
First citation Booy, F. P. & Pawley, J. B. (1993). Cryo-crinkling: what happens to carbon films on copper grids at low temperature. Ultramicroscopy, 48, 273–280.Google Scholar
First citation Brink, J. & Chiu, W. (1991). Contrast analysis of cryo-images of n-paraffin recorded at 400 kV out to 2.1 Å resolution. J. Microsc. 161, 279–295.Google Scholar
First citation Brink, J. & Chiu, W. (1994). Applications of a slow-scan CCD camera in protein electron crystallography. J. Struct. Biol. 113, 23–34.Google Scholar
First citation Brink, J., Gross, H., Tittmann, P., Sherman, M. B. & Chiu, W. (1998). Reduction of charging in protein electron cryomicroscopy. J. Microsc. 191, 67–73.Google Scholar
First citation Brink, J., Sherman, M. B., Berriman, J. & Chiu, W. (1998). Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy, 72, 41–52.Google Scholar
First citation Brink, J. & Wei Tam, M. (1996). Processing of electron diffraction patterns acquired on a slow-scan CCD camera. J. Struct. Biol. 116, 144–149.Google Scholar
First citation Butt, H. J., Wang, D. N., Hansma, P. K. & Kühlbrandt, W. (1991). Effect of surface roughness of carbon support films on high-resolution electron diffraction of two-dimensional protein crystals. Ultramicroscopy, 36, 307–318.Google Scholar
First citation Chiu, W. & Glaeser, R. M. (1977). Factors affecting high resolution fixed-beam transmission electron microscopy. Ultramicroscopy, 2, 207–217.Google Scholar
First citation Chiu, W., Knapek, E., Jeng, T. W. & Dietrick, I. (1981). Electron radiation damage of a thin protein crystal at 4 K. Ultramicroscopy, 6, 291–296.Google Scholar
First citation DeRosier, D. J. & Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature (London), 217, 130–134.Google Scholar
First citation Downing, K. H. & Jontes, J. (1992). Projection map of tubulin in zinc-induced sheets at 4 Å resolution. J. Struct. Biol. 109, 152–159.Google Scholar
First citation Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.Google Scholar
First citation Erickson, H. P. & Klug, A. (1970). The Fourier transform of an electron micrograph: effects of defocusing and aberrations, and implications for the use of underfocus contrast enhancement. Philos. Trans. R. Soc. London Ser. B, 261, 105–118.Google Scholar
First citation Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466–482.Google Scholar
First citation Glaeser, R. M. (1992). Specimen flatness of thin crystalline arrays: influence of the substrate. Ultramicroscopy, 46, 33–43.Google Scholar
First citation Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. (1996). Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.Google Scholar
First citation Hayward, S. B. & Glaeser, R. M. (1979). Radiation damage of purple membrane at low temperature. Ultramicroscopy, 4, 201–210.Google Scholar
First citation Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.Google Scholar
First citation Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy, 19, 147–178.Google Scholar
First citation Henderson, R. & Glaeser, R. M. (1985). Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy, 16, 139–150.Google Scholar
First citation Henderson, R. & Unwin, P. N. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London), 257, 28–32.Google Scholar
First citation Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W. & Whelan, M. J. (1977). Electron microscopy of thin crystals. Huntington: Robert K. Krieger Publishing Co.Google Scholar
First citation Isaacson, M. S. (1977). Specimen damage in the electron microscope. In Principles and techniques of electron micrsocopy. Biological applications, edited by M. A. Hyatt, pp. 1–78. New York: Van Nostrand Reinhold Co.Google Scholar
First citation Kimura, Y., Vassylyev, D. G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., Murata, K., Hirai, T. & Fujiyoshi, Y. (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature (London), 389, 206–211.Google Scholar
First citation Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.Google Scholar
First citation Mitsuoka, K., Hirai, T., Murata, K., Miyazawa, A., Kidera, A., Kimura, Y. & Fujiyoshi, Y. (1999). The structure of bacteriorhodopsin at 3.0 Å resolution based on electron crystallography: implication of the charge distribution. J. Mol. Biol. 286, 861–882.Google Scholar
First citation Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. (1999). Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765–786.Google Scholar
First citation Nogales, E., Wolf, S. G. & Downing, K. H. (1998). Structure of the alpha beta tubulin dimer by electron crystallography. Nature (London), 391, 199–203.Google Scholar
First citation Prasad, B. V., Degn, L. L., Jeng, T. W. & Chiu, W. (1990). Estimation of allowable errors for tilt parameter determination in protein electron crystallography. Ultramicroscopy, 33, 281–285.Google Scholar
First citation Shaw, P. J. & Hills, G. J. (1981). Tilted specimen in the electron microscope: a simple specimen holder and the calculation of tilt angles for crystalline specimens. Micron, 12, 279–282.Google Scholar
First citation Sherman, M. B., Brink, J. & Chiu, W. (1996). Performance of a slow-scan CCD camera for macromolecular imaging in a 400 kV electron cryomicroscope. Micron, 27, 129–139.Google Scholar
First citation Thomas, I. M. & Schmid, M. F. (1995). A cross-correlation method for merging electron crystallographic image data. J. Micros. Soc. Am. 1, 167–173.Google Scholar
First citation Unger, V. M., Kumar, N. M., Gilula, N. B. & Yeager, M. (1999). Three-dimensional structure of a recombinant gap junction membrane channel. Science, 283, 1176–1180.Google Scholar
First citation Unwin, P. N. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440.Google Scholar
First citation Walz, T., Hirai, T., Murata, K., Heymann, J. B., Mitsuoka, K., Fujiyoshi, Y., Smith, B. L., Agre, P. & Engel, A. (1997). The three-dimensional structure of aquaporin-1. Nature (London), 387, 624–627.Google Scholar
First citation Zhang, P., Toyoshima, C., Yonekura, K., Green, N. M. & Stokes, D. L. (1998). Structure of the calcium pump from sarcoplasmic reticulum at 8-Å resolution. Nature (London), 392, 835–839.Google Scholar
First citation Zhou, Z. H. & Chiu, W. (1993). Prospects for using an IVEM with a FEG for imaging macromolecules towards atomic resolution. Ultramicroscopy, 49, 407–416.Google Scholar