International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.4, pp. 438-443   | 1 | 2 |
https://doi.org/10.1107/97809553602060000701

Chapter 19.4. Small-angle neutron scattering

D. M. Engelmana* and P. B. Mooreb

aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA, and  bDepartments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
Correspondence e-mail:  don@paradigm.csb.yale.edu

References

First citation Atkinson, D. & Shipley, G. G. (1984). Structural studies of plasma lipoproteins. Basic Life Sci. 27, 211–226.Google Scholar
First citation Bacon, G. E. (1975). Neutron diffraction. Oxford University Press.Google Scholar
First citation Baldwin, J. P., Boseley, P. G., Bradbury, E. M. & Ibel, K. (1975). The subunit structure of the eukaryotic chromosome. Nature (London), 253, 245–249.Google Scholar
First citation Bilgin, N., Ehrenberg, M., Ebel, C., Zaccai, G., Sayers, Z., Koch, M. H. J., Svergun, D. I., Barberato, C., Volkov, V., Nissen, P. & Nyborg, J. (1998). Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate. Biochemistry, 37, 8163–8172.Google Scholar
First citation Bradbury, E. M., Baldwin, J. P., Carpenter, B. G., Hjelm, R. P., Hancock, R. & Ibel, K. (1976). Neutron-scattering studies of chromatin. Brookhaven Symp Biol. 27, IV97–IV117.Google Scholar
First citation Bragg, W. L. & Perutz, M. F. (1952). The external form of the haemoglobin molecule. I. Acta Cryst. 5, 277–283.Google Scholar
First citation Burks, C. & Engelman, D. M. (1981). Cholesteryl myristate conformation in liquid crystalline mesophases determined by neutron scattering. Proc. Natl Acad. Sci. USA, 78, 6863–6867.Google Scholar
First citation Capel, M. S., Engelman, D. M., Freeborn, B. R., Kjeldgaard, M., Langer, J. A., Ramakrishnan, V., Schindler, D. G., Schneider, D. K., Schoenborn, B. P. & Sillers, I. Y. (1987). A complete mapping of the proteins in the small ribosomal subunit of Escherichia coli. Science, 238, 1403–1406.Google Scholar
First citation Crichton, R., Engelman, D. M., Hass, J., Koch, M. H. J., Moore, P. B., Parfait, R. & Stuhrmann, H. B. (1977). A contrast variation study of specifically deuterated ribosomal subunits. Proc. Natl Acad. Sci. USA, 74, 5547–5550.Google Scholar
First citation Debye, P. (1915). Zerstreuung von Röntgenstrahlen. Ann. Phys. (Leipzig), 46, 809–823.Google Scholar
First citation Debye, P. & Bueche, A. M. (1949). Scattering by an inhomogeneous solid. J. Appl. Phys. 20, 518–525.Google Scholar
First citation Debye, P. & Pirenne, M. H. (1938). Über die Fourieranalyse von interferometrischen Messungen an freien Molekülen. Ann. Phys. (Leipzig), 33, 617–629.Google Scholar
First citation Dessen, P., Blanquet, S., Zaccai, G. & Jacrot, B. (1978). Antico-operative binding of initiator transfer RNA Met to methionyl-transfer RNA synthetase from E. coli: neutron scattering studies. J. Mol. Biol. 126, 293–313.Google Scholar
First citation Engelman, D. M. & Moore, P. B. (1972). A new method for the determination of biological quarternary structure by neutron scattering. Proc. Natl Acad. Sci. USA, 69, 1997–1999.Google Scholar
First citation Engelman, D. M. & Zaccai, G. (1980). Bacteriorhodopsin is an inside-out protein. Proc. Natl Acad. Sci. USA, 77, 5894–5898.Google Scholar
First citation Fujiwara, S. & Mendelson, R. A. (1996). In situ shape and distance measurements in neutron scattering and diffraction. Basic Life Sci. 64, 385–395.Google Scholar
First citation Glatter, O. & Kratky, O. (1982). Small angle X-ray scattering. London: Academic Press.Google Scholar
First citation Guinier, A. (1939). Diffraction of X-rays of very small angles – application to the study of ultramicroscopic phenomena. Ann. Phys. (Paris), 12, 161–237.Google Scholar
First citation Guinier, A. (1955). Small angle scattering of X-rays. New York: John Wiley and Sons. Google Scholar
First citation Guinier, A. (1962). Small angle X-ray scattering. In International tables for X-ray crystallography, Vol. III. Physical and chemical tables, pp. 324–329. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht).Google Scholar
First citation Hoppe, W. (1972). New X-ray method for the determination of the quaternary structure of protein complexes. Isr. J. Chem. 10, 321–333.Google Scholar
First citation Hunt, J. F., McCrea, P. D., Zaccai, G. & Engelman, D. M. (1997). Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J. Mol. Biol. 273, 1004–1019.Google Scholar
First citation Jacrot, B. & Zaccai, G. (1981). Determination of molecular weight by neutron scattering. Biopolymers, 20, 2413–2426.Google Scholar
First citation Jeanteur, D., Pattus, F. & Timmins, P. A. (1994). Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. J. Mol. Biol. 235, 898–907.Google Scholar
First citation Junemann, R., Burkhardt, N., Wadzack, J., Schmitt, M., Willumeit, R., Stuhrmann, H. B. & Nierhaus, K. H. (1998). Small angle scattering in ribosomal structure research: localization of the messenger RNA within ribosomal elongation states. J. Biol. Chem. 379, 807–818.Google Scholar
First citation Kratky, O. & Worthmann, W. (1947). Determination of the configuration of dissolved organic molecules by interferometric measurements with X-rays. Monatsch. Chem. 76, 263–281.Google Scholar
First citation Lehmann, M. S. & Zaccai, G. (1984). Neutron small-angle scattering studies of ribonuclease in mixed aqueous solutions and determination of the preferentially bound water. Biochemistry, 23, 1939–1942.Google Scholar
First citation May, R. P., Nowotny, V., Nowotny, P., Voss, H. & Nierhaus, K. H. (1992). Inter-protein distances within the large subunit from Escherichia coli ribosomes. EMBO J. 11, 373–378.Google Scholar
First citation Moore, P. B. (1980). Small-angle scattering. Information content and error analysis. J. Appl. Cryst. 13, 168–175.Google Scholar
First citation Moore, P. B. & Engelman, D. M. (1976). The production of deuterated E. coli. Brookhaven Symp. Biol. 27, V12–V23.Google Scholar
First citation Moore, P. B., Engelman, D. M. & Schoenborn, B. P. (1974). Asymmetry in the 50S ribosomal subunit of Escherichia coli. Proc. Natl Acad. Sci. USA, 71, 172–176.Google Scholar
First citation Moore, P. B., Langer, J. A. & Engelman, D. M. (1978). The measurement of the locations and radii of gyration of proteins in the 30S ribosomal unit of E. coli by neutron scattering. J. Appl. Cryst. 11, 479–482.Google Scholar
First citation Moore, P. B. & Weinstein, E. (1979). On the estimation of the locations of subunits within macromolecular aggregates from neutron interference data. J. Appl. Cryst. 12, 321–326.Google Scholar
First citation Nierhaus, K. H., Lietzke, R., May, R. P., Nowotny, V., Schulze, H., Simpson, K., Wurmbach, P. & Stuhrmann, H. B. (1983). Shape determinations of ribosomal proteins in situ. Proc. Natl Acad. Sci. USA, 80, 2889–2893.Google Scholar
First citation Nierhaus, K. H., Wadzack, J., Burkhardt, N., Junemann, R., Meerwinck, W., Willumeit, R. & Stuhrmann, H. B. (1998). Structure of the elongating ribosome: arrangement of the two tRNAs before and after translocation. Proc. Natl Acad. Sci. USA, 95, 945–950.Google Scholar
First citation Nowotny, P., Ruhl, M., Nowotny, V., May, R. P., Burkhardt, N., Voss, H. & Nierhaus, K. H. (1994). Direct shape determination of ribosomal proteins in solution and within the ribosome by means of neutron scattering. Biophys. Chem. 53, 115–122.Google Scholar
First citation Olah, G. A., Rokop, S. E., Wang, C. L., Blechner, S. L. & Trewhella, J. (1994). Troponin I encompasses an extended troponin C in the Ca(2+)-bound complex: a small-angle X-ray and neutron scattering study. Biochemistry, 33, 8233–8239.Google Scholar
First citation Porod, G. (1951). The X-ray small-angle scattering of close-packed colloid systems. I. Kolloid-Z. 124, 83–144.Google Scholar
First citation Porod, G. (1952). The X-ray small-angle scattering of close-packed colloid systems. II. Kolloid-Z. 125, 51–57.Google Scholar
First citation Serdyuk, I. N., Grenader, A. K. & Zaccai, G. (1979). Study of the internal structure of E. coli ribosomes by neutron and X-ray scattering. J. Mol. Biol. 135, 691–707.Google Scholar
First citation Serdyuk, I. N., Pavlov, M. Yu., Rublevskaya, I. N., Zaccai, G. & Leberman, R. (1994). Triple isotopic substitution method in small angle scattering. Application to the study of the ternary complex EF-Tu·GTp·aminoacyl tRNA. Biophys. Chem. 53, 123–130.Google Scholar
First citation Stöckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H., Zillig, W. & Crespi, H. (1980a). The core subunit structure in RNA polymerase holoenzyme determined by neutron small-angle scattering. Eur. J. Biochem. 112, 411–417.Google Scholar
First citation Stöckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H., Zillig, W. & Crespi, H. L. (1980b). The subunit positions within RNA polymerase holoenzyme determined by triangulation of centre-to-centre distances. Eur. J. Biochem. 112, 419–423.Google Scholar
First citation Stöckel, P., May, R., Strell, I., Cejka, Z., Hoppe, W., Heumann, H., Zillig, W., Crespi, H. L., Katz, J. J. & Ibel, K. (1979). Determination of intersubunit distances and subunit shape parameters in DNA-dependent RNA polymerase by neutron small-angle scattering. J. Appl. Cryst. 12, 176–185.Google Scholar
First citation Stone, D. B., Timmins, P. A., Schneider, D. K., Krylova, I., Ramos, C. H., Reinach, F. C. & Mendelson, R. A. (1998). The effect of regulatory Ca2+ on the in situ structures of troponin C and troponin I: a neutron scattering study. J. Mol. Biol. 281, 689–704.Google Scholar
First citation Stuhrmann, H. B. (1976). Small-angle scattering of proteins in solution. Brookhaven Symp. Biol. 27, IV3–IV19.Google Scholar
First citation Stuhrmann, H. B., Haas, J., Ibel, K., Koch, M. H. & Crichton, R. R. (1976). Low angle neutron scattering of ferritin studied by contrast variation. J. Mol. Biol. 100, 399–413.Google Scholar
First citation Stuhrmann, H. B. & Nierhaus, K. H. (1996). The determination of the in situ structure by nuclear spin contrast variation. Basic Life Sci. 64, 397–413.Google Scholar
First citation Stuhrmann, H. B., Tardieu, A., Mateu, L., Sardet, C., Luzzati, V., Aggerbeck, L. & Scanu, A. M. (1975). Neutron scattering study of human serum low density lipoprotein. Proc. Natl Acad. Sci. USA, 72, 2270–2273.Google Scholar
First citation Svergun, D. I. (1994). Solution scattering from biopolymers: advanced contrast-variation data analysis. Acta Cryst. A50, 391–402.Google Scholar
First citation Svergun, D. I., Barberato, C., Koch, M. H., Fetler, L. & Vachette, P. (1997). Large differences are observed between the crystal and solution quaternary structures of allosteric aspartate transcarbamylase in the R state. Proteins, 27, 110–117.Google Scholar
First citation Svergun, D. I., Burkhardt, N., Pedersen, J. S., Koch, M. H., Volkov, V. V., Kozin, M. B., Meerwink, W., Stuhrmann, H. B., Diedrich, G. & Nierhaus, K. H. (1997). Solution scattering structural analysis of the 70S Escherichia coli ribosome by contrast variation. II. A model of the ribosome and its RNA at 3.5 nm resolution. J. Mol. Biol. 271, 602–618.Google Scholar
First citation Svergun, D. I., Koch, M. H., Pedersen, J. S. & Serdyuk, I. N. (1996). Structural model of the 50S subunit of E. coli ribosomes from solution scattering. Basic Life Sci. 64, 149–174.Google Scholar
First citation Svergun, D. I., Richard, S., Koch, M. H., Sayers, Z., Kuprin, S. & Zaccai, G. (1998). Protein hydration in solution: experimental observation by X-ray and neutron scattering. Proc. Natl Acad. Sci. USA, 95, 2267–2272.Google Scholar
First citation Timmins, P. A., Hauk, J., Wacker, T. & Welte, W. (1991). The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. Implications for the crystallisation of membrane proteins. FEBS Lett. 280, 115–120.Google Scholar
First citation Uberbacher, E. C., Mardian, J. K., Rossi, R. M., Olins, D. E. & Bunick, G. J. (1982). Neutron scattering studies and modeling of high mobility group 14 core nucleosome complex. Proc. Natl Acad. Sci. USA, 79, 5258–5262.Google Scholar
First citation Vainshtein, B. K., Sosfenov, N. I. & Feigin, L. A. (1970). X-ray method for determining the gaps between heavy atoms in macromolecules in solution and its use for studying gramicidin derivatives. Dokl. Akad. Nauk SSSR, 190, 574–577.Google Scholar
First citation Vanatalu, K., Paalme, T., Vilu, R., Burkhardt, N., Junemann, R., May, R., Ruhl, M., Wadzack, J. & Nierhaus, K. H. (1993). Large-scale preparation of fully deuterated cell components. Ribosomes from Escherichia coli with high biological activity. Eur. J. Biochem. 216, 315–321.Google Scholar
First citation Zaccai, G. & Jacrot, B. (1983). Small angle neutron scattering. Annu. Rev. Biophys. Bioeng. 12, 139–157.Google Scholar