International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.4, p. 441   | 1 | 2 |

Section 19.4.3.7. Use of forward scattering to measure molecular weights

D. M. Engelmana* and P. B. Mooreb

aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA, and  bDepartments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
Correspondence e-mail:  don@paradigm.csb.yale.edu

19.4.3.7. Use of forward scattering to measure molecular weights

| top | pdf |

The value of the scattering function at zero scattering angle, which is obtained by extrapolation using a Guinier plot, is related to the molecular weight of the particle. In the neutron small-angle scattering case, the incoherent scattering background from hydrogen provides an internal standard. Using the incoherent background as an absolute calibration of the beam intensity, and knowing the concentration and composition of particles, one can obtain good values for the molecular weight, as pointed out by Jacrot & Zaccai (1981[link]) and Zaccai & Jacrot (1983[link]). This approach applies particularly well to proteins, where the average scattering density does not vary much from case to case, and can provide important data on the stoichiometry of oligomeric complexes. The limit in the accuracy of the measurement arises from limitations in knowing the protein concentration.

References

First citation Jacrot, B. & Zaccai, G. (1981). Determination of molecular weight by neutron scattering. Biopolymers, 20, 2413–2426.Google Scholar
First citation Zaccai, G. & Jacrot, B. (1983). Small angle neutron scattering. Annu. Rev. Biophys. Bioeng. 12, 139–157.Google Scholar








































to end of page
to top of page