International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.4, p. 443   | 1 | 2 |

Section 19.4.6.1. Contrast variation

D. M. Engelmana* and P. B. Mooreb

aDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA, and  bDepartments of Chemistry and Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
Correspondence e-mail:  don@paradigm.csb.yale.edu

19.4.6.1. Contrast variation

| top | pdf |

An early result that changed ideas about nucleosome organization came from measurements relying on the difference in protein and DNA densities (Baldwin et al., 1975[link]; Bradbury et al., 1976[link]). Information on the organization of serum lipoproteins was also based on intrinsic scattering differences (Stuhrmann et al., 1975[link]; Atkinson & Shipley, 1984[link]). The contrast between RNA and protein was used in early ribosome measurements (Crichton et al., 1977[link]; Moore et al., 1974[link]). Recent examples include detergent binding to membrane proteins (Timmins et al., 1991[link]) and the study of membrane protein–lipid complexes (Jeanteur et al., 1994[link]). Elegant use of contrast variation resulted in a structural explanation of the anti-cooperative binding of tRNA to synthetase, which had resisted study by other methods (Dessen et al., 1978[link]).

References

First citation Atkinson, D. & Shipley, G. G. (1984). Structural studies of plasma lipoproteins. Basic Life Sci. 27, 211–226.Google Scholar
First citation Baldwin, J. P., Boseley, P. G., Bradbury, E. M. & Ibel, K. (1975). The subunit structure of the eukaryotic chromosome. Nature (London), 253, 245–249.Google Scholar
First citation Bradbury, E. M., Baldwin, J. P., Carpenter, B. G., Hjelm, R. P., Hancock, R. & Ibel, K. (1976). Neutron-scattering studies of chromatin. Brookhaven Symp Biol. 27, IV97–IV117.Google Scholar
First citation Crichton, R., Engelman, D. M., Hass, J., Koch, M. H. J., Moore, P. B., Parfait, R. & Stuhrmann, H. B. (1977). A contrast variation study of specifically deuterated ribosomal subunits. Proc. Natl Acad. Sci. USA, 74, 5547–5550.Google Scholar
First citation Dessen, P., Blanquet, S., Zaccai, G. & Jacrot, B. (1978). Antico-operative binding of initiator transfer RNA Met to methionyl-transfer RNA synthetase from E. coli: neutron scattering studies. J. Mol. Biol. 126, 293–313.Google Scholar
First citation Jeanteur, D., Pattus, F. & Timmins, P. A. (1994). Membrane-bound form of the pore-forming domain of colicin A. A neutron scattering study. J. Mol. Biol. 235, 898–907.Google Scholar
First citation Moore, P. B., Engelman, D. M. & Schoenborn, B. P. (1974). Asymmetry in the 50S ribosomal subunit of Escherichia coli. Proc. Natl Acad. Sci. USA, 71, 172–176.Google Scholar
First citation Stuhrmann, H. B., Tardieu, A., Mateu, L., Sardet, C., Luzzati, V., Aggerbeck, L. & Scanu, A. M. (1975). Neutron scattering study of human serum low density lipoprotein. Proc. Natl Acad. Sci. USA, 72, 2270–2273.Google Scholar
First citation Timmins, P. A., Hauk, J., Wacker, T. & Welte, W. (1991). The influence of heptane-1,2,3-triol on the size and shape of LDAO micelles. Implications for the crystallisation of membrane proteins. FEBS Lett. 280, 115–120.Google Scholar








































to end of page
to top of page