International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.5, pp. 444-450   | 1 | 2 |
https://doi.org/10.1107/97809553602060000702

Chapter 19.5. Fibre diffraction

R. Chandrasekarana* and G. Stubbsb

aWhistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA, and  bDepartment of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
Correspondence e-mail:  chandra@purdue.edu

References

First citation Arnott, S. (1980). Twenty years hard labor as a fiber diffractionist. Am. Chem. Soc. Symp. Ser. 141, 1–30.Google Scholar
First citation Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. (1980). Left-handed DNA helices. Nature (London), 283, 743–745.Google Scholar
First citation Arnott, S., Chandrasekaran, R. & Leslie, A. G. W. (1976). Structure of the single-stranded polyribonucleotide polycytidylic acid. J. Mol. Biol. 106, 735–748.Google Scholar
First citation Arnott, S., Chandrasekaran, R., Millane, R. P. & Park, H.-S. (1986). DNA–RNA hybrid secondary structures. J. Mol. Biol. 188, 631–640.Google Scholar
First citation Arnott, S., Chandrasekaran, R., Puigjaner, L. C., Walker, J. K., Hall, I. H. & Birdsall, D. L. (1983). Wrinkled DNA. Nucleic Acids Res. 11, 1457–1474.Google Scholar
First citation Arnott, S., Dover, S. D. & Wonacott, A. J. (1969). Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles. Acta Cryst. B25, 2192–2206.Google Scholar
First citation Arnott, S., Guss, J. M., Hukins, D. W. L., Dea, I. C. M. & Rees, D. A. (1974). Conformation of keratan sulphate. J. Mol. Biol. 88, 175–184.Google Scholar
First citation Arnott, S. & Mitra, A. (1984). X-ray diffraction analysis of glycosaminoglycans. In Molecular biophysics of the extracellular matrix, edited by S. Arnott, D. A. Rees & E. R. Morris, pp. 41–67. New Jersey: Humana Press.Google Scholar
First citation Arnott, S., Scott, W. E., Rees, D. A. & McNab, C. G. A. (1974). i-Carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibers of divalent cation salts. J. Mol. Biol. 90, 253–267.Google Scholar
First citation Arnott, S., Wilkins, M. H. F., Fuller, W. & Langridge, R. (1967). Molecular and crystal structures of double-helical RNA. III. An 11-fold molecular model and comparison of the agreement between the observed and calculated three-dimensional diffraction data for 10- and 11-fold models. J. Mol. Biol. 27, 535–548.Google Scholar
First citation Arnott, S., Wilkins, M. H. F., Hamilton, L. D. & Langridge, R. (1965). Fourier synthesis studies of lithium DNA. Part III: Hoogsteen models. J. Mol. Biol. 11, 391–402.Google Scholar
First citation Arnott, S. & Wonacott, A. J. (1966). The refinement of the crystal and molecular structures of polymers using X-ray data and stereochemical constraints. Polymer, 7, 157–166.Google Scholar
First citation Bailey, K., Astbury, W. T. & Rudall, K. M. (1943). Members of the keratin-myosin group. Nature (London), 151, 716–717.Google Scholar
First citation Barrett, A. N., Leigh, J. B., Holmes, K. C., Leberman, R., Sengbusch, P. & Klug, A. (1971). An electron density map of tobacco mosaic virus at 10 Å resolution. Cold Spring Harbor Symp. Quant. Biol. 36, 433–448.Google Scholar
First citation Beese, L., Stubbs, G. & Cohen, C. (1987). Microtubule structure at 18 Å resolution. J. Mol. Biol. 194, 257–264.Google Scholar
First citation Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R-factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
First citation Bryan, R. K., Bansal, M., Folkhard, W., Nave, C. & Marvin, D. A. (1983). Maximum-entropy calculation of the electron density at 4 Å resolution of Pf1 filamentous bacteriophage. Proc. Natl Acad. Sci. USA, 80, 4728–4731.Google Scholar
First citation Chandrasekaran, R. (1997). Molecular architecture of polysaccharide helices in oriented fibers. Adv. Carbohydr. Chem. Biochem. 52, 311–439.Google Scholar
First citation Chandrasekaran, R. & Arnott, S. (1989). The structures of DNA and RNA helices in oriented fibers. In Landolt–Börnstein numerical data and functional relationships in science and technology, Vol. VII/1b, edited by W. Saenger, pp. 31–170. Berlin: Springer-Verlag.Google Scholar
First citation Chandrasekaran, R., Bian, W. & Okuyama, K. (1998). Three-dimensional structure of guaran. Carbohydr. Res. 312, 219–224.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000a). Structure of poly d(T)·poly d(A)·poly d(T). J. Biomol. Struct. Dynam. 17, 1011–1022.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000b). Structure of poly (U)·poly (A)·poly (U). J. Biomol. Struct. Dynam. 17, 1023–1034.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000c). Structure of poly (I)·poly (A)·poly (I). J. Biomol. Struct. Dynam. 17, 1035–1045.Google Scholar
First citation Chandrasekaran, R., Puigjaner, L. C., Joyce, K. L. & Arnott, S. (1988). Cation interactions in gellan: an X-ray study of the potassium salt. Carbohydr. Res. 181, 23–40.Google Scholar
First citation Chandrasekaran, R. & Radha, A. (1992). Structure of poly d(A)·poly d(T). J. Biomol. Struct. Dynam. 10, 153–168.Google Scholar
First citation Chandrasekaran, R., Radha, A. & Lee, E. J. (1994). Structural roles of calcium ions and side chains in welan: an X-ray study. Carbohydr. Res. 252, 183–207.Google Scholar
First citation Chandrasekaran, R., Radha, A., Lee, E. J. & Zhang, M. (1994). Molecular architecture of araban, galactoglucan and welan. Carbohydr. Polymers, 25, 235–243.Google Scholar
First citation Chandrasekaran, R., Radha, A. & Park, H.-S. (1995). Sodium ions and water molecules in the structure of poly d(A)·poly d(T). Acta Cryst. D51, 1025–1035.Google Scholar
First citation Chandrasekaran, R., Radha, A. & Park, H.-S. (1997). Structure of poly d(AI)·poly d(CT) in two different packing arrangements. J. Biomol. Struct. Dynam. 15, 285–305.Google Scholar
First citation Cochran, W., Crick, F. H. & Vand, V. (1952). The structure of synthetic polypeptides. I. The transform of atoms in a helix. Acta Cryst. 5, 581–586.Google Scholar
First citation Cohen, C., Harrison, S. C. & Stephens, R. E. (1971). X-ray diffraction from microtubules. J. Mol. Biol. 59, 375–380.Google Scholar
First citation Franklin, R. E. & Klug, A. (1955). The splitting of layer lines in X-ray fibre diagrams of helical structures: application to tobacco mosaic virus. Acta Cryst. 8, 777–780.Google Scholar
First citation Fraser, R. D. B., MacRae, T. P., Miller, A. & Rowlands, R. J. (1976). Digital processing of fibre diffraction patterns. J. Appl. Cryst. 9, 81–94.Google Scholar
First citation Fraser, R. D. B., MacRae, T. P. & Suzuki, E. (1978). An improved method for calculating the contribution of solvent to the X-ray diffraction pattern of biological molecules. J. Appl. Cryst. 11, 693–694.Google Scholar
First citation Gonzalez, A., Nave, C. & Marvin, D. A. (1995). Pf1 filamentous bacteriophage: refinement of a molecular model by simulated annealing using 3.3 Å resolution X-ray fibre diffraction data. Acta Cryst. D51, 792–804.Google Scholar
First citation Gregory, J. & Holmes, K. C. (1965). Methods of preparing orientated tobacco mosaic virus sols for X-ray diffraction. J. Mol. Biol. 13, 796–801.Google Scholar
First citation Hamilton, W. C. (1965). Significance tests on the crystallographic R factor. Acta Cryst. 18, 502–510.Google Scholar
First citation Hendrickson, W. A. (1985). Stereochemically restrained refinement of macromolecular structures. Methods Enzymol. 115, 252–270.Google Scholar
First citation Holmes, K. C., Popp, D., Gebhard, W. & Kabsch, W. (1990). Atomic model of the actin filament. Nature (London), 347, 44–49.Google Scholar
First citation Inouye, H., Fraser, P. E. & Kirschner, D. A. (1993). Structure of β-crystallite assemblies formed by Alzheimer β-amyloid protein analogs – analysis by X-ray diffraction. Biophys. J. 64, 502–519.Google Scholar
First citation Ivanova, M. I. & Makowski, L. (1998). Iterative low-pass filtering for estimation of the background in fiber diffraction patterns. Acta Cryst. A54, 626–631.Google Scholar
First citation Klug, A., Crick, F. H. C. & Wyckoff, H. W. (1958). Diffraction from helical structures. Acta Cryst. 11, 199–212.Google Scholar
First citation Lorenz, M. & Holmes, K. C. (1993). Computer processing and analysis of X-ray fiber diffraction data. J. Appl. Cryst. 26, 82–91.Google Scholar
First citation MacGillavry, C. H. & Bruins, E. M. (1948). On the Patterson transforms of fibre diagrams. Acta Cryst. 1, 156–158.Google Scholar
First citation Makowski, L. (1978). Processing of X-ray diffraction data from partially oriented specimens. J. Appl. Cryst. 11, 273–283.Google Scholar
First citation Makowski, L., Caspar, D. L. D. & Marvin, D. A. (1980). Filamentous bacteriophage Pf1 structure determined at 7 Å resolution by refinement of models for the α-helical subunit. J. Mol. Biol. 140, 149–181.Google Scholar
First citation Malinchik, S. B., Inouye, H., Szumowski, K. E. & Kirschner, D. A. (1998). Structural analysis of Alzheimer's β(1–40) amyloid: protofilament assembly of tubular fibrils. Biophys. J. 74, 537–545.Google Scholar
First citation Marvin, D. A., Wiseman, R. L. & Wachtel, E. J. (1974). Filamentous bacterial viruses. XI. Molecular architecture of the class II (Pf1, Xf) virion. J. Mol. Biol. 82, 121–138.Google Scholar
First citation Meyer, K. H. & Misch, L. (1937). Positions des atomes dans le nouveau modèle spatial de la cellulose. Helv. Chim. Acta, 20, 232–244.Google Scholar
First citation Millane, R. P. (1989). R factors in X-ray fiber diffraction. II. Largest likely R factors. Acta Cryst. A45, 573–576.Google Scholar
First citation Millane, R. P. & Arnott, S. (1985). Background removal in X-ray fiber diffraction patterns. J. Appl. Cryst. 18, 419–423.Google Scholar
First citation Millane, R. P. & Arnott, S. (1986). Digital processing of X-ray diffraction patterns from oriented fibers. J. Macromol. Sci. Phys. B24, 193–227.Google Scholar
First citation Namba, K., Pattanayak, R. & Stubbs, G. (1989). Visualization of protein–nucleic acid interactions in a virus: refinement of intact tobacco mosaic virus at 2.9 Å resolution by fiber diffraction data. J. Mol. Biol. 208, 307–325.Google Scholar
First citation Namba, K. & Stubbs, G. (1985). Solving the phase problem in fiber diffraction. Application to tobacco mosaic virus at 3.6 Å resolution. Acta Cryst. A41, 252–262.Google Scholar
First citation Namba, K. & Stubbs, G. (1987a). Isomorphous replacement in fiber diffraction using limited numbers of heavy-atom derivatives. Acta Cryst. A43, 64–69.Google Scholar
First citation Namba, K. & Stubbs, G. (1987b). Difference Fourier syntheses in fiber diffraction. Acta Cryst. A43, 533–539.Google Scholar
First citation Nambudripad, R., Stark, W. & Makowski, L. (1991). Neutron diffraction studies of the structure of filamentous bacteriophage Pf1 – demonstration that the coat protein consists of a pair of α-helices with an intervening, non-helical loop. J. Mol. Biol. 220, 359–379.Google Scholar
First citation Okuyama, K., Obata, Y., Noguchi, K., Kusaba, T., Ito, Y. & Ohno, S. (1996). Single helical structure of curdlan triacetate. Biopolymers, 38, 557–566.Google Scholar
First citation Pauling, L. & Corey, R. B. (1951). Atomic coordinates and structure factors for two helical configurations of polypeptide chains. Proc. Natl Acad. Sci. USA, 37, 235–240.Google Scholar
First citation Pauling, L. & Corey, R. B. (1953). Two rippled-sheet configurations of polypeptide chains, and a note about the pleated sheets. Proc. Natl Acad. Sci. USA, 39, 253–256.Google Scholar
First citation Ramachandran, G. N. & Kartha, G. (1955). Structure of collagen. Nature (London), 176, 593–595.Google Scholar
First citation Rich, A. & Crick, F. H. C. (1955). The structure of collagen. Nature (London), 176, 915–916.Google Scholar
First citation Shotton, M. W., Pope, L. H., Forsyth, V. T., Denny, R. C., Archer, J., Langan, P., Ye, H. & Boote, C. (1998). New developments in instrumentation for X-ray and neutron fibre diffraction experiments. J. Appl. Cryst. 31, 758–766.Google Scholar
First citation Smith, P. J. C. & Arnott, S. (1978). LALS: a linked-atom least-squares reciprocal-space refinement system incorporating stereochemical restraints to supplement sparse diffraction data. Acta Cryst. A34, 3–11.Google Scholar
First citation Squire, J. M., Al-Khayat, H. A. & Yagi, N. (1993). Muscle thin filament structure and regulation. Actin sub-domain movements and the tropomyosin shift modelled from low-angle X-ray diffraction. J. Chem. Soc. Faraday Trans. 89, 2717–2726.Google Scholar
First citation Stroud, W. J. & Millane, R. P. (1995). Analysis of disorder in biopolymer fibers. Acta Cryst. A51, 790–800.Google Scholar
First citation Stubbs, G. (1987). The Patterson function in fiber diffraction. In Patterson and Pattersons, edited by J. P. Glusker, E. K. Patterson & M. Rossi, pp. 548–557. New York: Oxford University Press.Google Scholar
First citation Stubbs, G. (1989). The probability distributions of X-ray intensities in fiber diffraction: largest likely values for fiber diffraction R factors. Acta Cryst. A45, 254–258. Google Scholar
First citation Stubbs, G. J. & Diamond, R. (1975). The phase problem for cylindrically averaged diffraction patterns. Solution by isomorphous replacement and application to tobacco mosaic virus. Acta Cryst. A31, 709–718.Google Scholar
First citation Stubbs, G. & Makowski, L. (1982). Coordinated use of isomorphous replacement and layer-line splitting in the phasing of fiber diffraction data. Acta Cryst. A38, 417–425.Google Scholar
First citation Stubbs, G., Namba, K. & Makowski, L. (1986). Application of restrained least-squares refinement to fiber diffraction from macromolecular assemblies. Biophys. J. 49, 58–60.Google Scholar
First citation Torbet, J. (1987). Using magnetic orientation to study structure and assembly. Trends Biochem. Sci. 12, 327–330.Google Scholar
First citation Walkinshaw, M. D. & Arnott, S. (1981). Conformations and interactions of pectins. I. X-ray diffraction analysis of sodium pectate in neutral and acidified forms. J. Mol. Biol. 153, 1055–1073.Google Scholar
First citation Wang, H., Culver, J. N. & Stubbs, G. (1997). Structure of ribgrass mosaic virus at 2.9 Å resolution: evolution and taxonomy of tobamoviruses. J. Mol. Biol. 269, 769–779.Google Scholar
First citation Wang, H. & Stubbs, G. (1993). Molecular dynamics in refinement against fiber diffraction data. Acta Cryst. A49, 504–513.Google Scholar
First citation Wang, H. & Stubbs, G. (1994). Structure determination of cucumber green mottle mosaic virus by X-ray fiber diffraction. Significance for the evolution of tobamoviruses. J. Mol. Biol. 239, 371–384.Google Scholar
First citation Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids. Nature (London), 171, 737–738.Google Scholar
First citation Winter, W. T., Smith, P. J. C. & Arnott, S. (1975). Hyaluronic acid: structure of a fully extended 3-fold helical sodium salt and comparison with the less extended 4-fold helical forms. J. Mol. Biol. 99, 219–235.Google Scholar
First citation Yamashita, I., Hasegawa, K., Suzuki, H., Vonderviszt, F., Mimori-Kiyosue, Y. & Namba, K. (1998). Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction. Nature Struct. Biol. 5, 125–132.Google Scholar
First citation Yamashita, I., Suzuki, H. & Namba, K. (1998). Multiple-step method for making exceptionally well-oriented liquid-crystalline sols of macromolecular assemblies. J. Mol. Biol. 278, 609–615.Google Scholar
First citation Yamashita, I., Vonderviszt, F., Mimori, Y., Suzuki, H., Oosawa, K. & Namba, K. (1995). Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding. J. Mol. Biol. 253, 547–558.Google Scholar
First citation Zugenmaier, P. & Sarko, A. (1980). The variable virtual bond modeling technique for solving polymer crystal structures. Am. Chem. Soc. Symp. Ser. 141, 225–237.Google Scholar