International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 19.5, p. 449   | 1 | 2 |

Section 19.5.8.2. Polynucleotides

R. Chandrasekarana* and G. Stubbsb

aWhistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN 47907, USA, and  bDepartment of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
Correspondence e-mail:  [email protected]

19.5.8.2. Polynucleotides

| top | pdf |

The molecular structures of a series of DNA and RNA helices have been determined and refined using data from polycrystalline fibres (Arnott et al., 1969[link]; Chandrasekaran & Arnott, 1989[link]). These include the canonical A, B and C forms of DNA, corresponding, respectively, to 11-, 10- and 9.3-fold right-handed antiparallel Watson–Crick base-paired helices. Structural differences between the three have been attributed to changes in furanose puckerings and helical parameters: the A form has C3-endo, but B and C have C2-endo or analogous C3-exo puckers. All RNA duplexes are members of the A family. Later important structures included the sixfold single helix of poly (C) (Arnott et al., 1976[link]), a compact eightfold double helix for poly d(AT) and poly d(IC) (Arnott et al., 1983[link]), and the left-handed Z-DNA for poly d(GC) (Arnott et al., 1980[link]). Difference Fourier syntheses were instrumental in locating a spine of water molecules in the minor groove and a series of sodium ions and water molecules that bridge the phosphate groups of adjacent DNA molecules in the tenfold helices of poly (dA)·poly (dT) (Chandrasekaran et al., 1995[link]), poly (dA)·poly (dU) and poly d(AI)·poly d(CT) (Chandrasekaran et al., 1997[link]). Data from noncrystalline fibres have been used to determine, among others, the structures of DNA·RNA hybrid duplexes (Arnott et al., 1986[link]), a DNA triple-stranded helix (Chandrasekaran et al., 2000a[link]) and two RNA triple-stranded helices (Chandrasekaran et al., 2000b[link],c[link]). In each case mentioned, the best model was clearly preferred statistically (Hamilton, 1965[link]) and had an R value between 0.2 and 0.3 to about 3 Å resolution.

References

First citation Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. & Ratliff, R. L. (1980). Left-handed DNA helices. Nature (London), 283, 743–745.Google Scholar
First citation Arnott, S., Chandrasekaran, R. & Leslie, A. G. W. (1976). Structure of the single-stranded polyribonucleotide polycytidylic acid. J. Mol. Biol. 106, 735–748.Google Scholar
First citation Arnott, S., Chandrasekaran, R., Millane, R. P. & Park, H.-S. (1986). DNA–RNA hybrid secondary structures. J. Mol. Biol. 188, 631–640.Google Scholar
First citation Arnott, S., Chandrasekaran, R., Puigjaner, L. C., Walker, J. K., Hall, I. H. & Birdsall, D. L. (1983). Wrinkled DNA. Nucleic Acids Res. 11, 1457–1474.Google Scholar
First citation Arnott, S., Dover, S. D. & Wonacott, A. J. (1969). Least-squares refinement of the crystal and molecular structures of DNA and RNA from X-ray data and standard bond lengths and angles. Acta Cryst. B25, 2192–2206.Google Scholar
First citation Chandrasekaran, R. & Arnott, S. (1989). The structures of DNA and RNA helices in oriented fibers. In Landolt–Börnstein numerical data and functional relationships in science and technology, Vol. VII/1b, edited by W. Saenger, pp. 31–170. Berlin: Springer-Verlag.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000a). Structure of poly d(T)·poly d(A)·poly d(T). J. Biomol. Struct. Dynam. 17, 1011–1022.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000b). Structure of poly (U)·poly (A)·poly (U). J. Biomol. Struct. Dynam. 17, 1023–1034.Google Scholar
First citation Chandrasekaran, R., Giacometti, A. & Arnott, S. (2000c). Structure of poly (I)·poly (A)·poly (I). J. Biomol. Struct. Dynam. 17, 1035–1045.Google Scholar
First citation Chandrasekaran, R., Radha, A. & Park, H.-S. (1995). Sodium ions and water molecules in the structure of poly d(A)·poly d(T). Acta Cryst. D51, 1025–1035.Google Scholar
First citation Chandrasekaran, R., Radha, A. & Park, H.-S. (1997). Structure of poly d(AI)·poly d(CT) in two different packing arrangements. J. Biomol. Struct. Dynam. 15, 285–305.Google Scholar
First citation Hamilton, W. C. (1965). Significance tests on the crystallographic R factor. Acta Cryst. 18, 502–510.Google Scholar








































to end of page
to top of page