International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 19.6, pp. 451-463   | 1 | 2 |
https://doi.org/10.1107/97809553602060000703

Chapter 19.6. Electron cryomicroscopy

T. S. Bakera* and R. Hendersonb

aDepartment of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA, and bMedical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England
Correspondence e-mail:  tsb@bragg.bio.purdue.edu

References

Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. (1984). Cryo-electron microscopy of viruses. Nature (London), 308, 32–36.Google Scholar
Agar, A. W., Alderson, R. H. & Chescoe, D. (1974). Principles and practice of electron microscope operation. In Practical methods in electron microscopy, Vol. 2, edited by A. M. Glauert, pp. 1–345. Amsterdam: North-Holland.Google Scholar
Agard, D. A. (1983). A least-squares method for determining structure factors in three-dimensional tilted-view reconstructions. J. Mol. Biol. 167, 849–852.Google Scholar
Agrawal, R. K., Penczek, P., Grassucci, R. A., Li, Y., Leith, A., Nierhaus, K. H. & Frank, J. (1996). Direct visualization of A-, P-, and E-site transfer RNAs in the Escherichia coli ribosome. Science, 271, 1000–1002.Google Scholar
Amos, L. A., Henderson, R. & Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39, 183–231.Google Scholar
Baker, T. S. & Amos, L. A. (1978). Structure of the tubulin dimer in zinc-induced sheets. J. Mol. Biol. 123, 89–106.Google Scholar
Baker, T. S. & Cheng, R. H. (1996). A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 116, 120–130.Google Scholar
Baker, T. S. & Johnson, J. E. (1996). Low resolution meets high: towards a resolution continuum from cells to atoms. Curr. Opin. Struct. Biol. 6, 585–594.Google Scholar
Baker, T. S., Newcomb, W. W., Booy, F. P., Brown, J. C. & Steven, A. C. (1990). Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J. Virol. 64, 563–573.Google Scholar
Baker, T. S., Newcomb, W. W., Olson, N. H., Cowsert, L. M., Olson, C. & Brown, J. C. (1991). Structures of bovine and human papilloma viruses: analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys. J. 60, 1445–1456.Google Scholar
Baker, T. S., Olson, N. H. & Fuller, S. D. (1999). Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 63, 862–922.Google Scholar
Baldwin, J. M., Henderson, R., Beckman, E. & Zemlin, F. (1988). Images of purple membrane at 2.8 Å resolution obtained by cryo-electron microscopy. J. Mol. Biol. 202, 585–591.Google Scholar
Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B. & Steitz, T. A. (1998). A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell, 93, 1105–1115.Google Scholar
Baumeister, W., Grimm, R. & Walz, J. (1999). Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85.Google Scholar
Bellare, J. R., Davis, H. T., Scriven, L. E. & Talmon, Y. (1988). Controlled environment vitrification system: an improved sample preparation technique. J. Electron Microsc. Tech. 10, 87–111.Google Scholar
Belnap, D. M., Olson, N. H. & Baker, T. S. (1997). A method for establishing the handedness of biological macromolecules. J. Struct. Biol. 120, 44–51.Google Scholar
Belnap, D. M., Olson, N. H., Cladel, N. M., Newcomb, W. W., Brown, J. C., Kreider, J. W., Christensen, N. D. & Baker, T. S. (1996). Conserved features in papillomavirus and polyomavirus capsids. J. Mol. Biol. 259, 249–263.Google Scholar
Beroukhim, R. & Unwin, N. (1997). Distortion correction of tubular crystals: improvements in the acetylcholine receptor structure. Ultramicroscopy, 70, 57–81.Google Scholar
Berriman, J. & Unwin, N. (1994). Analysis of transient structures by cryo-microscopy combined with rapid mixing of spray droplets. Ultramicroscopy, 56, 241–252.Google Scholar
Beuron, F., Maurizi, M. R., Belnap, D. M., Kocsis, E., Booy, F. P., Kessel, M. & Steven, A. C. (1998). At sixes and sevens: characterization and the symmetry mismatch of the ClpAP chaperone-assisted protease. J. Struct. Biol. 123, 248–259.Google Scholar
Bloomer, A. C., Graham, J., Hovmoller, S., Butler, P. J. G. & Klug, A. (1978). Protein disk of tobacco mosaic virus at 2.8 Å resolution showing the interactions within and between subunits. Nature (London), 276, 362–368.Google Scholar
Boier Martin, I. M., Marinescu, D. C., Lynch, R. E. & Baker, T. S. (1997). Identification of spherical virus particles in digitized images of entire electron micrographs. J. Struct. Biol. 120, 146–157.Google Scholar
Böttcher, B., Kiselev, N. A., Stel'mashchuk, V. Y., Perevozchikova, N. A., Borisov, A. V. & Crowther, R. A. (1997). Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 71, 325–330.Google Scholar
Böttcher, B., Tsuji, N., Takahashi, H., Dyson, M. R., Zhao, S., Crowther, R. A. & Murray, K. (1998). Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J. 17, 6839–6845.Google Scholar
Böttcher, B., Wynne, S. A. & Crowther, R. A. (1997). Determination of the fold of the core protein of hepatitis B virus by electron microscopy. Nature (London), 386, 88–91.Google Scholar
Brenner, S. & Horne, R. W. (1959). A negative staining method for high resolution electron microscopy of viruses. Biochem. Biophys. Acta Protein Struct. 34, 103–110.Google Scholar
Brink, J., Sherman, M. B., Berriman, J. & Chiu, W. (1998). Evaluation of charging on macromolecules in electron cryomicroscopy. Ultramicroscopy, 72, 41–52.Google Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
Carragher, B., Whittaker, M. & Milligan, R. A. (1996). Helical processing using PHOELIX. J. Struct. Biol. 116, 107–112.Google Scholar
Carrascosa, J. L. & Steven, A. C. (1978). A procedure for evaluation of significant structural differences between related arrays of protein molecules. Micron, 9, 199–206.Google Scholar
Castón, J. R., Belnap, D. M., Steven, A. C. & Trus, B. L. (1999). A strategy for determining the orientations of refractory particles for reconstruction from cryo-electron micrographs with particular reference to round, smooth-surfaced, icosahedral viruses. J. Struct. Biol. 125, 209–215.Google Scholar
Che, Z., Olson, N. H., Leippe, D., Lee, W.-M., Mosser, A. G., Rueckert, R. R., Baker, T. S. & Smith, T. J. (1998). Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus–Fab complexes. J. Virol. 72, 4610–4622.Google Scholar
Cheng, A., van Hoek, A. N., Yeager, M., Verkman, A. S. & Mitra, A. K. (1997). Three-dimensional organization of a human water channel. Nature (London), 387, 627–630.Google Scholar
Cheng, R. H., Kuhn, R. J., Olson, N. H., Rossmann, M. G., Choi, H.-K., Smith, T. J. & Baker, T. S. (1995). Nucleocapsid and glycoprotein organization in an enveloped virus. Cell, 80, 621–630.Google Scholar
Cheng, R. H., Olson, N. H. & Baker, T. S. (1992). Cauliflower mosaic virus, a 420 subunit (T = 7), multi-layer structure. Virology, 186, 655–668.Google Scholar
Cheng, R. H., Reddy, V. S., Olson, N. H., Fisher, A. J., Baker, T. S. & Johnson, J. E. (1994). Functional implications of quasi-equivalence in a T = 3 icosahedral animal virus established by cryo-electron microscopy and X-ray crystallography. Structure, 2, 271–282.Google Scholar
Chiu, W. (1986). Electron microscopy of frozen, hydrated biological specimens. Annu. Rev. Biophys. Biophys. Chem. 15, 237–257.Google Scholar
Conway, J. F., Cheng, N., Zlotnick, A., Stahl, S. J., Wingfield, P. T., Belnap, D. M., Kanngiesser, U., Noah, M. & Steven, A. C. (1998). Hepatitis B virus capsid: localization of the putative immunodominant loop (residues 78 to 83) on the capsid surface, and implications for the distinction between c and e-antigens. J. Mol. Biol. 279, 1111–1121.Google Scholar
Conway, J. F. & Steven, A. C. (1999). Methods for reconstructing density maps of `single' particles from cryoelectron micrographs to subnanometer resolution. J. Struct. Biol. 128, 106–118.Google Scholar
Conway, J. F., Trus, B. L., Booy, F. P., Newcomb, W. W., Brown, J. C. & Steven, A. C. (1996). Visualization of three-dimensional density maps reconstructed from cryoelectron micrographs of viral capsids. J. Struct. Biol. 116, 200–208.Google Scholar
Cowley, J. M. (1975). Diffraction physics. Amsterdam: North-Holland.Google Scholar
Crowther, R. A. (1971). Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Philos. Trans. R. Soc. London, 261, 221–230.Google Scholar
Crowther, R. A., Amos, L. A., Finch, J. T., DeRosier, D. J. & Klug, A. (1970). Three dimensional reconstructions of spherical viruses by Fourier synthesis from electron micrographs. Nature (London), 226, 421–425.Google Scholar
Crowther, R. A., Henderson, R. & Smith, J. M. (1996). MRC image processing programs. J. Struct. Biol. 116, 9–16.Google Scholar
Crowther, R. A., Kiselev, N. A., Böttcher, B., Berriman, J. A., Borisova, G. P., Ose, V. & Pumpens, P. (1994). Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell, 77, 943–950.Google Scholar
Crowther, R. A. & Luther, P. K. (1984). Three-dimensional reconstruction from a single oblique section of fish muscle M-band. Nature (London), 307, 569–570.Google Scholar
Cyrklaff, M. & Kühlbrandt, W. (1994). High resolution electron microscopy of biological specimens in cubic ice. Ultramicroscopy, 55, 141–153.Google Scholar
DeRosier, D. J. & Klug, A. (1968). Reconstruction of three dimensional structures from electron micrographs. Nature (London), 217, 130–134.Google Scholar
DeRosier, D. J. & Moore, P. B. (1970). Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369.Google Scholar
Downing, K. H. (1991). Spot-scan imaging in transmission electron microscopy. Science, 251, 53–59.Google Scholar
Dryden, K. A., Wang, G., Yeager, M., Nibert, M. L., Coombs, K. M., Furlong, D. B., Fields, B. N. & Baker, T. S. (1993). Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J. Cell Biol. 122, 1023–1041.Google Scholar
Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A. W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228.Google Scholar
Dubochet, J., Chang, J.-J., Freeman, R., Lepault, J. & McDowall, A. W. (1982). Frozen aqueous suspensions. Ultramicroscopy, 10, 55–62.Google Scholar
Dubochet, J., Groom, M. & Müller-Neuteboom, S. (1982). The mounting of macromolecules for electron microscopy with particular reference to surface phenomena and the treatment of support films by glow discharge. Adv. Opt. Electron Microsc. 8, 107–135.Google Scholar
Dubochet, J., Lepault, J., Freeman, R., Berriman, J. A. & Homo, J.-C. (1982). Electron microscopy of frozen water and aqueous solutions. J. Microsc. 128, 219–237.Google Scholar
Egelman, E. H. (1986). An algorithm for straightening images of curved filamentous structures. Ultramicroscopy, 19, 367–374.Google Scholar
Erickson, H. P. & Klug, A. (1971). Measurement and compen-sation of defocusing and aberrations by Fourier processing of micrographs. Philos. Trans. R. Soc. London Ser. B, 261, 105–118.Google Scholar
Essen, L. O., Siegert, R., Lehmann, W. D. & Oesterhelt, D. (1998). Lipid patches in membrane protein oligomers: crystal structure of the bacteriorhodopsin–lipid complex. Proc. Natl Acad. Sci. USA, 95, 11673–11678.Google Scholar
Finch, J. T. (1972). The hand of the helix of tobacco mosaic virus. J. Mol. Biol. 66, 291–294.Google Scholar
Frank, J. (1973). The envelope of electron microscopic transfer functions for partially coherent illumination. Optik, 38, 519–536.Google Scholar
Frank, J. (1992). Editor. Electron tomography: three-dimensional imaging with the transmission electron microscope. New York: Plenum Press.Google Scholar
Frank, J. (1996). Three-dimensional electron microscopy of macromolecular assemblies. San Diego: Academic Press.Google Scholar
Frank, J. (1997). The ribosome at higher resolution – the donut takes shape. Curr. Opin. Struct. Biol. 7, 266–272.Google Scholar
Frank, J., Heagle, A. B. & Agrawal, R. K. (1999). Animation of the dynamical events of the elongation cycle based on cryoelectron microscopy of functional complexes of the ribosome. J. Struct. Biol. 128, 15–18.Google Scholar
Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M. & Leith, A. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199.Google Scholar
Frank, J., Verschoor, A. & Boublik, M. (1981). Computer averaging of electron micrographs of 40S ribosomal subunits. Science, 214, 1353–1355.Google Scholar
Frank, J., Zhu, J., Penczek, P., Li, Y., Srivastava, S., Verschoor, A., Radermacher, M., Grassucci, R., Lata, R. K. & Agrawal, R. K. (1995). A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature (London), 376, 441–444.Google Scholar
Fujiyoshi, Y., Mizusaki, T., Morikawa, K., Yamagishi, H., Aoki, Y., Kihara, H. & Harada, Y. (1991). Development of a superfluid helium stage for high-resolution electron microscopy. Ultramicroscopy, 38, 241–251.Google Scholar
Fuller, S. D., Berriman, J. A., Butcher, S. J. & Gowen, B. E. (1995). Low pH induces swiveling of the glycoprotein heterodimers in the Semiliki forest virus spike complex. Cell, 81, 715–725.Google Scholar
Fuller, S. D., Butcher, S. J., Cheng, R. H. & Baker, T. S. (1996). Three-dimensional reconstruction of icosahedral particles – the uncommon line. J. Struct. Biol. 116, 48–55.Google Scholar
Fung, J. C., Liu, W., DeRuijter, W. J., Chen, H., Abbey, C. K., Sedat, J. W. & Agard, D. A. (1996). Toward fully automated high-resolution electron tomography. J. Struct. Biol. 116, 181–189.Google Scholar
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J. & Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell, 100, 537–549.Google Scholar
Glaeser, R. M. (1971). Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466–482.Google Scholar
Glaeser, R. M. (1985). Electron crystallography of biological macromolecules. Annu. Rev. Phys. Chem. 36, 243–275.Google Scholar
Grant, R. A., Filman, D. J., Finkel, S. E., Kolter, R. & Hogle, J. M. (1998). The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nature Struct. Biol. 5, 294–303.Google Scholar
Grigorieff, N. (1998). Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033–1046.Google Scholar
Grigorieff, N., Ceska, T. A., Downing, K. H., Baldwin, J. M. & Henderson, R. (1996). Electron-crystallographic refinement of the structure of bacteriorhodopsin. J. Mol. Biol. 259, 393–421.Google Scholar
Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Ziéntara, S., Mertens, P. P. C. & Stuart, D. I. (1998). The atomic structure of the bluetongue virus core. Nature (London), 395, 470–478.Google Scholar
Grimes, J. M., Jakana, J., Ghosh, M., Basak, A. K., Roy, P., Chiu, W., Stuart, D. I. & Prasad, B. V. V. (1997). An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure, 5, 885–893.Google Scholar
Haas, F. de, Kuchomov, A., Traveau, J.-C., Boisset, N., Vinogradov, S. N. & Lamy, J. N. (1997). Three-dimensional reconstruction of native and reassembled Lumbricus terrestris extracellular hemoglobin. Location of the monomeric globin chains. Biochemistry, 36, 7330–7338.Google Scholar
Hadida-Hassan, M., Young, S. J., Peltier, S. T., Wong, M., Lamont, S. & Ellisman, M. H. (1999). Web-based telemicroscopy. J. Struct. Biol. 125, 235–245.Google Scholar
Hardt, S., Wang, B. & Schmid, M. F. (1996). A brief description of I.C.E.: the integrated crystallographic environment. J. Struct. Biol. 116, 68–70.Google Scholar
Hargittai, I. & Hargittai, M. (1988). Editors. Stereochemical applications of gas-phase electron diffraction. New York: VCH.Google Scholar
Hasler, L., Heymann, J. B., Engel, A., Kistler, J. & Walz, T. (1998). 2D crystallization of membrane proteins: rationales and examples. J. Struct. Biol. 121, 162–171.Google Scholar
Havelka, W. A., Henderson, R. & Oesterhelt, D. (1995). Three-dimensional structure of halorhodopsin at 7 Å resolution. J. Mol. Biol. 247, 726–738.Google Scholar
Heel, M. van (1987a). Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy, 21, 111–124.Google Scholar
Heel, M. van (1987b). Similarity measures between images. Ultramicroscopy, 21, 95–100.Google Scholar
Heel, M. van & Frank, J. (1981). Use of multivariate statistics in analyzing the images of biological macromolecules. Ultramicroscopy, 6, 187–194.Google Scholar
Heel, M. van, Harauz, G. & Orlova, E. V. (1996). A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24.Google Scholar
Heel, M. van & Hollenberg, J.(1980). On the stretching of distorted images of two-dimensional crystals. In Electron microscopy at molecular dimensions, edited by W. Baumeister & W. Vogell, pp. 256–260. Berlin: Springer-Verlag.Google Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons, and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193.Google Scholar
Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E. & Downing, K. H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899–929.Google Scholar
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. & Zemlin, F. (1986). Structure of purple membrane from halobacterium: recording, measurement, and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy, 19, 147–178.Google Scholar
Henderson, R. & Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London), 257, 28–32.Google Scholar
Hewat, E. A., Verdaguer, N., Fita, I., Blakemore, W., Brookes, S., King, A., Newman, J., Domingo, E., Mateu, M. G. & Stuart, D. I. (1997). Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic group. EMBO J. 16, 1492–1500.Google Scholar
Hirose, K., Amos, W. B., Lockhart, A., Cross, R. A. & Amos, L. A. (1997). Three-dimensional cryoelectron microscopy of 16-protofilament microtubules: structure, polarity, and interaction with motor proteins. J. Struct. Biol. 118, 140–148.Google Scholar
Hoenger, A. & Milligan, R. A. (1997). Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry. J. Mol. Biol. 265, 553–564.Google Scholar
Homo, J.-C., Booy, F., Labouesse, P., Lepault, J. & Dubochet, J. (1984). Improved anticontaminator for cryo-electron microscopy with a Philips EM 400. J. Microsc. 136, 337–340.Google Scholar
Hoppe, W., Langer, R., Knesch, G. & Poppe, C. (1968). Protein-kristallstrukturanalyse mit elektronenstrahlen. Naturwissenschaften, 55, 333–336.Google Scholar
Horne, R. W. & Pasquali-Ronchetti, I. (1974). A negative staining-carbon film technique for studying viruses in the electron microscope. J. Ultrastruct. Res. 47, 361–383.Google Scholar
Huxley, H. E. & Zubay, G. (1960). Electron microscope observations on the structure of microsomal particles from Escherichia coli. J. Mol. Biol. 2, 10–18.Google Scholar
Ilag, L. L., Olson, N. H., Dokland, T., Music, C. L., Cheng, R. H., Bowen, Z., McKenna, R., Rossmann, M. G., Baker, T. S. & Incardona, N. L. (1995). DNA packaging intermediates of bacteriophage ϕ X174. Structure, 3, 353–363.Google Scholar
Isaacson, M., Langmore, J. & Rose, H. (1974). Determination of the non-localization of the inelastic scattering of electrons by electron microscopy. Optik, 41, 92–96.Google Scholar
Jacobson, R. H., Zhang, X.-J., DuBose, R. F. & Matthews, B. W. (1994). Three-dimensional structure of β-galactosidase from E. coli. Nature (London), 369, 761–766.Google Scholar
Jap, B., Zulauf, M., Scheybani, T., Hefti, A., Baumeister, W. & Aebi, U. (1992). 2D crystallization: from art to science. Ultramicroscopy, 46, 45–84.Google Scholar
Jeng, T.-W., Crowther, R. A., Stubbs, G. & Chui, W. (1989). Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. J. Mol. Biol. 205, 251–257.Google Scholar
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.Google Scholar
Kenney, J., Karsenti, E., Gowen, B. & Fuller, S. D. (1997). Three-dimensional reconstruction of the mammalian centriole from cryoelectron micrographs: the use of common lines for orientation and alignment. J. Struct. Biol. 120, 320–328.Google Scholar
Kimura, Y., Vassylyev, D. G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., Murata, K., Hirai, T. & Fujiyoshi, Y. (1997). Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature (London), 389, 206–211.Google Scholar
Kisseberth, N., Whittaker, M., Weber, D., Potter, C. S. & Carragher, B. (1997). emScope: a tool kit for control and automation of a remote electron microscope. J. Struct. Biol. 120, 309–319.Google Scholar
Klug, A. & Berger, J. E. (1964). An optical method for the analysis of periodicities in electron micrographs, and some observations on the mechanism of negative staining. J. Mol. Biol. 10, 565–569.Google Scholar
Kolodziej, S. J., Klueppelberg, H. U., Nolasco, N., Ehses, W., Strickland, D. K. & Stoops, J. K. (1998). Three-dimensional structure of the human plasmin α2-macroglobulin complex. J. Struct. Biol. 123, 124–133.Google Scholar
Kong, L. B., Siva, A. C., Rome, L. H. & Stewart, P. L. (1999). Structure of the vault, a ubiquitous cellular component. Structure, 7, 371–379.Google Scholar
Kornberg, R. & Darst, S. A. (1991). Two dimensional crystals of proteins on liquid layers. Curr. Opin. Struct. Biol. 1, 642–646.Google Scholar
Koster, A. J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. & Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120, 276–308.Google Scholar
Krivanek, O. L. & Mooney, P. E. (1993). Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy, 49, 95–108.Google Scholar
Kubalek, E. W., LeGrice, S. F. J. & Brown, P. O. (1994). Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J. Struct. Biol. 113, 117–123.Google Scholar
Kühlbrandt, W., Wang, D. N. & Fujiyoshi, Y. (1994). Atomic model of plant light-harvesting complex by electron crystallography. Nature (London), 367, 614–621.Google Scholar
Langmore, J. P. & Smith, M. F. (1992). Quantitative energy-filtered electron microscopy of biological molecules in ice. Ultramicroscopy, 46, 349–373.Google Scholar
Lawton, J. A., Estes, M. K. & Prasad, B. V. V. (1997). Three-dimensional visualization of mRNA release from actively transcribing rotavirus particles. Nature Struct. Biol. 4, 118–121.Google Scholar
Lawton, J. A. & Prasad, B. V. V. (1996). Automated software package for icosahedral virus reconstruction. J. Struct. Biol. 116, 209–215.Google Scholar
Lepault, J., Booy, F. P. & Dubochet, J. (1983). Electron microscopy of frozen biological specimens. J. Microsc. 129, 89–102.Google Scholar
Liu, H., Smith, T. J., Lee, W.-M., Mosser, A. G., Rueckert, R. R., Olson, N. H., Cheng, R. H. & Baker, T. S. (1994). Structure determination of an Fab fragment that neutralizes human rhinovirus 14 and analysis of the Fab–virus complex. J. Mol. Biol. 240, 127–137.Google Scholar
Luecke, H., Richter, H. T. & Lanyi, J. K. (1998). Proton transfer pathways in bacteriorhodopsin at 2.3 Å resolution. Science, 280, 1934–1937.Google Scholar
Luo, C., Butcher, S. & Bamford, D. H. (1993). Isolation of a phospholipid-free protein shell of bacteriophage PRD1, an Escherichia coli virus with an internal membrane. Virology, 194, 564–569.Google Scholar
McEwen, B. F., Downing, K. H. & Glaeser, R. M. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy, 60, 357–373.Google Scholar
Mancini, E. J., de Haas, F. & Fuller, S. D. (1997). High-resolution icosahedral reconstruction: fulfilling the promise of cryo-electron microscopy. Structure, 5, 741–750.Google Scholar
Mattevi, A., Obmolova, G., Schulze, E., Kalk, K. H., Westphal, A. H., de Kok, A. & Hol, W. G. J. (1992). Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science, 255, 1544–1550.Google Scholar
Mayer, E. & Astl, G. (1992). Limits of cryofixation as seen by Fourier transform infrared spectra of metmyoglobin azide and carbonyl hemoglobin in vitrified and freeze concentrated aqueous solution. Ultramicroscopy, 45, 185–197.Google Scholar
Metoz, F., Arnal, I. & Wade, R. H. (1997). Tomography without tilt: three-dimensional imaging of microtubule/motor complexes. J. Struct. Biol. 118, 159–168.Google Scholar
Milligan, R. A. (1996). Protein–protein interactions in the rigor actomyosin complex. Proc. Natl Acad. Sci. USA, 93, 21–26.Google Scholar
Miyazawa, A., Fujiyoshi, Y., Stowell, M. & Unwin, N. (1999). Nicotinic acetylcholine receptor at 4.6 Å resolution: transverse tunnels in the channel wall. J. Mol. Biol. 288, 765–786.Google Scholar
Morgan, D. G. & DeRosier, D. (1992). Processing images of helical structures: a new twist. Ultramicroscopy, 46, 263–285.Google Scholar
Namba, K. & Vonderviszt, F. (1997). Molecular architecture of bacterial flagellum. Q. Rev. Biophys. 30, 1–65.Google Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. (1997). Visualizing the secondary structure of tubulin: three-dimensional map at 4 Å. J. Struct. Biol. 118, 119–127.Google Scholar
Nogales, E., Wolf, S. G. & Downing, K. H. (1998). Structure of the αβ tubulin dimer by electron crystallography. Nature (London), 391, 199–203.Google Scholar
Olins, D. E., Olins, A. L., Levy, H. A., Durfee, R. C., Margle, S. M., Tinnel, E. P. & Dover, S. D. (1983). Electron microscopy tomography: transcription in three dimensions. Science, 220, 498–500.Google Scholar
Olson, N. H. & Baker, T. S. (1989). Magnification calibration and the determination of spherical virus diameters using cryo-microscopy. Ultramicroscopy, 30, 281–298.Google Scholar
Olson, N. H., Chipman, P. R., Bloom, M. E., McKenna, R., Agbandje-McKenna, M., Booth, T. F. & Baker, T. S. (1997). Automated CCD data collection and 3D reconstruction of Aleutian mink disease parvovirus. In Microscopy and microanalysis, Vol. 3, Supplement 2, Proceedings: Microscopy & microanalysis '97, Cleveland, Ohio, 10–14 August, 1997, pp. 1117–1118. Cleveland, Ohio: Microscopy Society of America/Springer.Google Scholar
Owen, C. H., Morgan, D. G. & DeRosier, D. J. (1996). Image analysis of helical objects: the Brandeis helical package. J. Struct. Biol. 116, 167–175.Google Scholar
Pebay-Peyroula, E., Rummel, G., Rosenbusch, J. P. & Landau, E. M. (1997). X-ray structure of bacteriorhodopsin at 2.5 angstroms from microcrystals grown in lipidic cubic phases. Science, 277, 1676–1681.Google Scholar
Penczek, P., Radermacher, M. & Frank, J. (1992). Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy, 40, 33–53.Google Scholar
Penczek, P. A., Grassucci, R. A. & Frank, J. (1994). The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy, 53, 251–270.Google Scholar
Polyakov, A., Richter, C., Malhotra, A., Koulich, D., Borukhov, S. & Darst, S. A. (1998). Visualization of the binding site for the transcript cleavage factor GreB on Escherichia coli RNA polymerase. J. Mol. Biol. 281, 465–473.Google Scholar
Prasad, B. V., Yamaguchi, S. & Roy, S. (1992). Three-dimensional structure of single-shelled bluetongue virus. J. Virol. 66, 2135–2142.Google Scholar
Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9, 359–394.Google Scholar
Radermacher, M. (1991). Three-dimensional reconstruction of single particles in electron microscopy. In Image analysis in biology, edited by D.-P. Hader, pp. 219–246. Boca Raton: CRC Press. Google Scholar
Radermacher, M. (1992). Weighted back-projection methods. In Electron tomography, edited by J. Frank, pp. 91–115. New York: Plenum Press. Google Scholar
Radermacher, M. (1994). Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy, 53, 121–136.Google Scholar
Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. (1987). Three-dimensional reconstructions from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146, 113–136.Google Scholar
Reimer, L. (1989). Transmission electron microscopy. Berlin: Springer-Verlag.Google Scholar
Reviakine, I., Bergsma-Schutter, W. & Brisson, A. (1998). Growth of protein 2-D crystals on supported planar lipid bilayers imaged in situ by AFM. J. Struct. Biol. 121, 356–361.Google Scholar
Rigaud, J.-L., Mosser, G., Lacapere, J.-J., Olofsson, A., Levy, D. & Ranck, J.-L. (1997). Bio-beads: an efficient strategy for two-dimensional crystallization of membrane proteins. J. Struct. Biol. 118, 226–235.Google Scholar
Schatz, M. & van Heel, M. (1990). Invariant classification of molecular views in electron micrographs. Ultramicroscopy, 32, 255–264.Google Scholar
Schatz, M., Orlova, E. V., Dube, P., Jager, J. & van Heel, M. (1995). Structure of Lumbricus terrestris hemoglobin at 30 Å resolution determined using angular reconstitution. J. Struct. Biol. 114, 28–40.Google Scholar
Shah, A. K. & Stewart, P. L. (1998). QVIEW: software for rapid selection of particles from digital electron micrographs. J. Struct. Biol. 123, 17–21.Google Scholar
Sharma, M. R., Penczek, P., Grassucci, R., Xin, H.-B., Fleisher, S. & Wagenknecht, T. (1998). Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J. Biol. Chem. 273, 18429–18434.Google Scholar
Sheehan, B., Fuller, S. D., Pique, M. E. & Yeager, M. (1996). AVS software for visualization in molecular microscopy. J. Struct. Biol. 116, 99–105.Google Scholar
Sherman, M. B., Brink, J. & Chiu, W. (1996). Performance of a slow-scan CCD camera for macromolecular imaging in a 400 kV electron cryomicroscope. Micron, 27, 129–139.Google Scholar
Siegel, D. P. & Epand, R. M. (1997). The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: implications for membrane fusion mechanisms. Biophys. J. 73, 3089–3111.Google Scholar
Siegel, D. P., Green, W. J. & Talmon, Y. (1994). The mechanism of lamellar-to-inverted hexagonal phase transitions: a study using temperature-jump cryo-electron microscopy. Biophys. J. 66, 402–414.Google Scholar
Skoglund, U. & Daneholt, B. (1986). Electron microscope tomography. Trends Biochem. Sci. 11, 499–503.Google Scholar
Skoglund, U., Öfverstedt, L.-G., Burnett, R. M. & Bricogne, G. (1996). Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 117, 173–188.Google Scholar
Smith, T. J., Chase, E. S., Schmidt, T. J., Olson, N. H. & Baker, T. S. (1996). Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature (London), 383, 350–354.Google Scholar
Speir, J. A., Munshi, S., Wang, G., Baker, T. S. & Johnson, J. E. (1995). Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure, 3, 63–78.Google Scholar
Spence, J. C. H. (1988). Experimental high-resolution electron microscopy. Oxford University Press.Google Scholar
Spencer, S. M., Sgro, J.-Y., Dryden, K. A., Baker, T. S. & Nibert, M. L. (1997). IRIS explorer software for radial-depth cueing reovirus particles and other macromolecular structures determined by cryoelectron microscopy and image reconstruction. J. Struct. Biol. 120, 11–21.Google Scholar
Stewart, M. (1988). Computer image processing of electron micrographs of biological structures with helical symmetry. J. Electron Microsc. Tech. 9, 325–358.Google Scholar
Stewart, M. (1990). Electron microscopy of biological macromolecules: frozen hydrated methods and computer image processing. In Modern microscopies: techniques and applications, edited by P. J. Duke & A. G. Michette, pp. 9–39. New York: Plenum Press.Google Scholar
Stewart, P. L., Chiu, C. Y., Huang, S., Muir, T., Zhao, Y., Chait, B., Mathias, P. & Nemerow, G. R. (1997). Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J. 16, 1189–1198.Google Scholar
Stewart, P. L., Fuller, S. D. & Burnett, R. M. (1993). Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12, 2589–2599.Google Scholar
Subramaniam, S., Gerstein, M., Oesterhelt, D. & Henderson, R. (1993). Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J. 12, 1–18.Google Scholar
Tao, Y., Olson, N. H., Xu, W., Anderson, D. L., Rossmann, M. G. & Baker, T. S. (1998). Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell, 95, 431–437.Google Scholar
Taveau, J.-C. (1996). Presentation of the SIGMA software: software of imagery and graphics for molecular architecture. J. Struct. Biol. 116, 223–229.Google Scholar
Taylor, K. A. & Glaeser, R. M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science, 186, 1036–1037.Google Scholar
Taylor, K. A. & Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55, 448–456.Google Scholar
Taylor, K. A., Tang, J., Cheng, Y. & Winkler, H. (1997). The use of electron tomography for structural analysis of disordered protein arrays. J. Struct. Biol. 120, 372–386.Google Scholar
Thuman-Commike, P. A. & Chiu, W. (1996). PTOOL: a software package for the selection of particles from electron cryomicroscopy spot-scan images. J. Struct. Biol. 116, 41–47.Google Scholar
Toyoshima, C. & Unwin, N. (1990). Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J. Cell Biol. 111, 2623–2635.Google Scholar
Toyoshima, C., Yonekura, K. & Sasabe, H. (1993). Contrast transfer for frozen-hydrated specimens. II. Amplitude contrast at very low frequencies. Ultramicroscopy, 48, 165–176.Google Scholar
Trachtenberg, S. (1998). A fast-freezing device with a retractable environmental chamber, suitable for kinetic cryo-electron microscopy studies. J. Struct. Biol. 123, 45–55.Google Scholar
Trinick, J. & Cooper, J. (1990). Concentration of solutes during preparation of aqueous suspensions for cryo-electron microscopy. J. Microsc. 159, 215–222.Google Scholar
Trus, B. L., Roden, R. B. S., Greenstone, H. L., Vrhel, M., Schiller, J. T. & Booy, F. P. (1997). Novel structural features of bovine papillomavirus capsid revealed by a three-dimensional reconstruction to 9 Å resolution. Nature Struct. Biol. 4, 413–420.Google Scholar
Unger, V. M., Kumar, N. M., Gilula, N. B. & Yeager, M. (1999). Three-dimensional structure of a recombinant gap junction membrane channel. Science, 283, 1176–1180.Google Scholar
Unser, M., Trus, B. L., Frank, J. & Steven, A. C. (1989). The spectral signal-to-noise ratio resolution criterion: computational efficiency and statistical precision. Ultramicroscopy, 30, 429–434.Google Scholar
Unwin, N. (1993). Nicotinic acetylcholine receptor at 9 Å resolution. J. Mol. Biol. 229, 1101–1124.Google Scholar
Unwin, N. (1995). Acetylcholine receptor channel imaged in the open state. Nature (London), 373, 37–43.Google Scholar
Unwin, P. N. T. & Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440.Google Scholar
Valpuesta, J. M., Carrascosa, J. L. & Henderson, R. (1994). Analysis of electron microscope images and electron diffraction patterns of thin crystals of Φ29 connectors in ice. J. Mol. Biol. 240, 281–287.Google Scholar
Vénien-Bryan, C. & Fuller, S. D. (1994). The organization of the spike complex of Semliki forest virus. J. Mol. Biol. 236, 572–583.Google Scholar
Vigers, G. P. A., Crowther, R. A. & Pearse, B. M. F. (1986). Three-dimensional structure of clathrin cages in ice. EMBO J. 5, 529–534.Google Scholar
Volkmann, N. & Hanein, D. (1999). Quantitative fitting of atomic models into observed densities derived by electron microscopy. J. Struct. Biol. 125, 176–184.Google Scholar
Wade, R. H. (1992). A brief look at imaging and contrast transfer. Ultramicroscopy, 46, 145–156.Google Scholar
Wade, R. H. & Frank, J. (1977). Electron microscope transfer functions for partially coherent axial illumination and chromatic defocus spread. Optik, 49, 81–92.Google Scholar
Walker, M., Zhang, X.-Z., Jiang, W., Trinick, J. & White, H. D. (1999). Observation of transient disorder during myosin subfragment-1 binding to actin by stopped-flow fluorescence and millisecond time resolution electron cryomicroscopy: evidence that the start of the crossbridge power stroke in muscle has variable geometry. Proc. Natl Acad. Sci. USA, 96, 465–470.Google Scholar
Walz, J., Tamura, T., Tamura, N., Grimm, R., Baumeister, W. & Koster, A. J. (1997). Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell, 1, 59–65.Google Scholar
Walz, T. & Grigorieff, N. (1998). Electron crystallography of two-dimensional crystals of membrane proteins. J. Struct. Biol. 121, 142–161.Google Scholar
White, H. D., Walker, M. L. & Trinick, J. (1998). A computer-controlled spraying-freezing apparatus for millisecond time-resolution electron cryomicroscopy. J. Struct. Biol. 121, 306–313.Google Scholar
Wikoff, W. R., Wang, G., Parrish, C. R., Cheng, R. H., Strassheim, M. L., Baker, T. S. & Rossmann, M. G. (1994). The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure, 2, 595–607.Google Scholar
Wilson-Kubalek, E. M., Brown, R. E., Celia, H. & Milligan, R. A. (1998). Lipid nanotubes as substrates for helical crystallization of macromolecules. Proc. Natl Acad. Sci. USA, 95, 8040–8045.Google Scholar
Winkelmann, D. A., Baker, T. S. & Rayment, I. (1991). Three-dimensional structure of myosin subfragment-1 from electron microscopy of sectioned crystals. J. Cell Biol. 114, 701–713.Google Scholar
Winkler, H., Reedy, M. C., Reedy, M. K., Tregear, R. & Taylor, K. A. (1996). Three-dimensional structure of nucleotide-bearing crossbridges in situ: oblique section reconstruction of insect flight muscle in AMPPNP at 23°C. J. Mol. Biol. 264, 302–322.Google Scholar
Winkler, H. & Taylor, K. A. (1996). Software for 3-D reconstruction from images of oblique sections through 3-D crystals. J. Struct. Biol. 116, 241–247.Google Scholar
Wriggers, W., Milligan, R. A. & McCammon, J. A. (1999). Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195.Google Scholar
Wynne, S. A., Crowther, R. A. & Leslie, A. G. W. (1999). Crystal structure of the hepatitis B virus capsid. Mol. Cell, 3, 771–780.Google Scholar
Yeager, M., Berriman, J. A., Baker, T. S. & Bellamy, A. R. (1994). Three-dimensional structure of the rotavirus hemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 13, 1011–1018.Google Scholar
Yeager, M., Unger, V. M. & Mitra, A. K. (1999). Three-dimensional structure of membrane proteins determined by two-dimensional crystallization, electron cryomicroscopy, and image analysis. Methods Enzymol. 294, 135–180.Google Scholar
Yoshimura, H., Matsumoto, M., Endo, S. & Nagayama, K. (1990). Two-dimensional crystallization of proteins on mercury. Ultramicroscopy, 32, 265–274.Google Scholar
Zemlin, F. (1989). Dynamic focusing for recording images from tilted samples in small-spot scanning with a transmission electron microscope. J. Electron Microsc. Tech. 11, 251–257.Google Scholar
Zemlin, F. (1992). Desired features of a cryoelectron microscope for the electron crystallography of biological material. Ultramicroscopy, 46, 25–32.Google Scholar
Zemlin, F. (1994). Expected contribution of the field-emission gun to high-resolution transmission electron microscopy. Micron, 25, 223–226.Google Scholar
Zemlin, F., Beckmann, E. & van der Mast, K. D. (1996). A 200 kV electron microscope with Schottky field emitter and a helium-cooled superconducting objective lens. Ultramicroscopy, 63, 227–238.Google Scholar
Zhao, X., Fox, J. M., Olson, N. H., Baker, T. S. & Young, M. J. (1995). In vitro assembly of cowpea chlorotic mottle virus from coat protein expressed in Escherichia coli and in vitro-transcribed viral cDNA. Virology, 207, 486–494.Google Scholar
Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J. & Chiu, W. (1999). Visualization of tegument–capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol. 73, 3210–3218.Google Scholar
Zhou, Z. H. & Chiu, W. (1993). Prospects for using an IVEM with a FEG for imaging macromolecules towards atomic resolution. Ultramicroscopy, 49, 407–416.Google Scholar
Zhou, Z. H., Chiu, W., Haskell, K., Spears, H. J., Jakana, J., Rixon, F. J. & Scott, L. R. (1998). Refinement of herpesvirus B-capsid structure on parallel supercomputers. Biophys. J. 74, 576–588.Google Scholar
Zhou, Z. H., Hardt, S., Wang, B., Sherman, M. B., Jakana, J. & Chiu, W. (1996). CTF determination of images of ice-embedded single particles using a graphics interface. J. Struct. Biol. 116, 216–222.Google Scholar
Zhou, Z. H., Macnab, S. J., Jakana, J., Scott, L. R., Chiu, W. & Rixon, F. J. (1998). Identification of the sites of interaction between the scaffold and outer shell in herpes simplex virus-1 capsids by difference electron imaging. Proc. Natl Acad. Sci. USA, 95, 2778–2783.Google Scholar
Zhou, Z. H., Prasad, B. V. V., Jakana, J., Rixon, F. J. & Chiu, W. (1994). Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. J. Mol. Biol. 242, 456–469.Google Scholar
Zhu, J., Penczek, P. A., Schroder, R. & Frank, J. (1997). Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol. 118, 197–219.Google Scholar