InternationalCrystallography of biological macromoleculesTables for Crystallography Volume F Edited by M. G. Rossmann and E. Arnold © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. F. ch. 21.1, p. 503
## Section 21.1.7.2.5. Noncrystallographic symmetry |

Molecules that are related by noncrystallographic symmetry exist in very similar, but not identical, physical environments. This implies that their structures are expected to be quite similar, although different relative domain orientations and local variations may occur (*e.g.* owing to different crystal-packing interactions; Kleywegt, 1996). Many criteria have been developed to quantify the differences between (NCS) related models. Some, such as the r.m.s. distance (*e.g.* on all atoms, backbone atoms or C^{α} atoms) are based on distances between equivalent atoms, measured after a (to some extent arbitrary; Kleywegt, 1996) structural superpositioning operation has been performed. Others are based on a comparison of torsion angles, be it of main-chain ϕ, ψ angles [*e.g.* Δϕ, Δψ plot (Korn & Rose, 1994); multiple-model Ramachandran plot (Kleywegt, 1996); σ(ϕ), σ(ψ) plot (Kleywegt, 1996); circular variance (Allen & Johnson, 1991) plots of ϕ and ψ (G. J. Kleywegt, unpublished results); Euclidian ϕ, ψ distances (Carson *et al.*, 1994) or pseudo-energy values (Carson *et al.*, 1994)] or side-chain χ_{1}, χ_{2} angles [*e.g.* multiple-model χ_{1}, χ_{2} plot (Kleywegt, 1996); σ(χ_{1}), σ(χ_{2}) plots (Kleywegt, 1996); circular variance (Allen & Johnson, 1991) plots of χ_{1} and χ_{2} (G. J. Kleywegt, unpublished results); Euclidian χ_{1}, χ_{2} distances (Carson *et al.*, 1994) or pseudo-energy values (Carson *et al.*, 1994)]. Still other methods are based on analysing differences in contact-surface areas (Abagyan & Totrov, 1997), temperature factors (Kleywegt, 1996) or the geometry of the C^{α} backbone alone (Flocco & Mowbray, 1995; Kleywegt, 1996). Many of these methods can also be used to compare the structures of related molecules in different crystals or crystal forms (*e.g.* complexes, mutants).

### References

Abagyan, R. A. & Totrov, M. M. (1997).*Contact area difference (CAD): a robust measure to evaluate accuracy of protein models.*

*J. Mol. Biol.*

**268**, 678–685.Google Scholar

Allen, F. H. & Johnson, O. (1991).

*Automated conformational analysis from crystallographic data. 4. Statistical descriptors for a distribution of torsion angles.*

*Acta Cryst.*B

**47**, 62–67.Google Scholar

Carson, M., Buckner, T. W., Yang, Z., Narayana, S. V. L. & Bugg, C. E. (1994).

*Error detection in crystallographic models.*

*Acta Cryst.*D

**50**, 900–909.Google Scholar

Flocco, M. M. & Mowbray, S. L. (1995).

*Cα-based torsion angles: a simple tool to analyze protein conformational changes.*

*Protein Sci.*

**4**, 2118–2122.Google Scholar

Kleywegt, G. J. (1996).

*Use of non-crystallographic symmetry in protein structure refinement.*

*Acta Cryst.*D

**52**, 842–857.Google Scholar

Korn, A. P. & Rose, D. R. (1994).

*Torsion angle differences as a means of pinpointing local polypeptide chain trajectory changes for identical proteins in different conformational states.*

*Protein Eng.*

**7**, 961–967.Google Scholar