International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 22.1, pp. 531-545   | 1 | 2 |
https://doi.org/10.1107/97809553602060000710

Chapter 22.1. Protein surfaces and volumes: measurement and use

M. Gerstein,a F. M. Richards,a M. S. Chapmanb and M. L. Connollyc

a Department of Molecular Biophysics & Biochemistry, 266 Whitney Avenue, Yale University, PO Box 208114, New Haven, CT 06520, USA,bDepartment of Chemistry & Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA, and c1259 El Camino Real 184, Menlo Park, CA 94025, USA

References

First citation Acharya, R., Fry, E., Logan, D., Stuart, D., Brown, F., Fox, G. & Rowlands, D. (1990). The three-dimensional structure of foot-and-mouth disease virus. New aspects of positive-strand RNA viruses, edited by M. A. Brinton & S. X. Heinz, pp. 319–327. Washington DC: American Society for Microbiology.Google Scholar
First citation Arnold, E. & Rossmann, M. G. (1990). Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 Å. J. Mol. Biol. 211, 763–801.Google Scholar
First citation Baker, E. N. & Hubbard, R. E. (1984). Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44, 97–179.Google Scholar
First citation Bernal, J. D. & Finney, J. L. (1967). Random close-packed hard-sphere model II. Geometry of random packing of hard spheres. Discuss. Faraday Soc. 43, 62–69.Google Scholar
First citation Blake, C. C. F., Koenig, D. F., Mair, G. A., North, A. C. T., Phillips, D. C. & Sarma, V. R. (1965). Structure of hen egg-white lysozyme, a three-dimensional Fourier synthesis at 2 Å resolution. Nature (London), 206, 757–761.Google Scholar
First citation Bondi, A. (1964). van der Waals volumes and radii. J. Phys. Chem. 68, 441–451.Google Scholar
First citation Bondi, A. (1968). Molecular crystals, liquids and glasses. New York: Wiley.Google Scholar
First citation Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217.Google Scholar
First citation Chandler, D., Weeks, J. D. & Andersen, H. C. (1983). van der Waals picture of liquids, solids, and phase transformations. Science, 220, 787–794.Google Scholar
First citation Chapman, M. S. (1993). Mapping the surface properties of macromolecules. Protein Sci. 2, 459–469.Google Scholar
First citation Chapman, M. S. (1994). Sequence similarity scores and the inference of structure/function relationships. Comput. Appl. Biosci. (CABIOS), 10, 111–119.Google Scholar
First citation Chothia, C. (1975). Structural invariants in protein folding. Nature (London), 254, 304–308.Google Scholar
First citation Chothia, C. (1976). The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105, 1–12.Google Scholar
First citation Chothia, C. & Janin, J. (1975). Principles of protein–protein recognition. Nature (London), 256, 705–708.Google Scholar
First citation Connolly, M. (1986). Measurement of protein surface shape by solid angles. J. Mol. Graphics, 4, 3–6.Google Scholar
First citation Connolly, M. L. (1983). Analytical molecular surface calculation. J. Appl. Cryst. 16, 548–558.Google Scholar
First citation Connolly, M. L. (1991). Molecular interstitial skeleton. Comput. Chem. 15, 37–45.Google Scholar
First citation Diamond, R. (1974). Real-space refinement of the structure of hen egg-white lysozyme. J. Mol. Biol. 82, 371–391.Google Scholar
First citation Dunfield, L. G., Burgess, A. W. & Scheraga, H. A. (1979). J. Phys. Chem. 82, 2609.Google Scholar
First citation Edelsbrunner, H., Facello, M. & Liang, J. (1996). On the definition and construction of pockets in macromolecules, pp. 272–287. Singapore: World Scientific.Google Scholar
First citation Edelsbrunner, H., Facello, M., Ping, F. & Jie, L. (1995). Measuring proteins and voids in proteins. Proc. 28th Hawaii Intl Conf. Sys. Sci. pp. 256–264.Google Scholar
First citation Edelsbrunner, H. & Mucke, E. (1994). Three-dimensional alpha shapes. ACM Trans. Graphics, 13, 43–72.Google Scholar
First citation Eisenberg, D. & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature (London), 319, 199–203.Google Scholar
First citation Fauchere, J.-L. & Pliska, V. (1983). Hydrophobic parameters π of amino-acid side chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem. Chim. Ther. 18, 369–375.Google Scholar
First citation Finkelstein, A. (1994). Implications of the random characteristics of protein sequences for their three-dimensional structure. Curr. Opin. Struct. Biol. 4, 422–428.Google Scholar
First citation Finney, J. L. (1975). Volume occupation, environment and accessibility in proteins. The problem of the protein surface. J. Mol. Biol. 96, 721–732.Google Scholar
First citation Finney, J. L., Gellatly, B. J., Golton, I. C. & Goodfellow, J. (1980). Solvent effects and polar interactions in the structural stability and dynamics of globular proteins. Biophys. J. 32, 17–33.Google Scholar
First citation Fritz-Wolf, K., Schnyder, T., Wallimann, T. & Kabsch, W. (1996). Structure of mitochondrial creatine kinase. Nature (London), 381, 341–345.Google Scholar
First citation Gelin, B. R. & Karplus, M. (1979). Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. Biochemistry, 18, 1256–1268.Google Scholar
First citation Gellatly, B. J. & Finney, J. L. (1982). Calculation of protein volumes: an alternative to the Voronoi procedure. J. Mol. Biol. 161, 305–322.Google Scholar
First citation Gerstein, M. (1992). A resolution-sensitive procedure for comparing surfaces and its application to the comparison of antigen-combining sites. Acta Cryst. A48, 271–276.Google Scholar
First citation Gerstein, M. & Chothia, C. (1996). Packing at the protein–water interface. Proc. Natl Acad. Sci. USA, 93, 10167–10172.Google Scholar
First citation Gerstein, M., Lesk, A. M., Baker, E. N., Anderson, B., Norris, G. & Chothia, C. (1993). Domain closure in lactoferrin: two hinges produce a see-saw motion between alternative close-packed interfaces. J. Mol. Biol. 234, 357–372.Google Scholar
First citation Gerstein, M., Lesk, A. M. & Chothia, C. (1994). Structural mechanisms for domain movements. Biochemistry, 33, 6739–6749.Google Scholar
First citation Gerstein, M. & Lynden-Bell, R. M. (1993a). Simulation of water around a model protein helix. 1. Two-dimensional projections of solvent structure. J. Phys. Chem. 97, 2982–2991.Google Scholar
First citation Gerstein, M. & Lynden-Bell, R. M. (1993b). Simulation of water around a model protein helix. 2. The relative contributions of packing, hydrophobicity, and hydrogen bonding. J. Phys. Chem. 97, 2991–2999.Google Scholar
First citation Gerstein, M. & Lynden-Bell, R. M. (1993c). What is the natural boundary for a protein in solution? J. Mol. Biol. 230, 641–650.Google Scholar
First citation Gerstein, M., Sonnhammer, E. & Chothia, C. (1994). Volume changes on protein evolution. J. Mol. Biol. 236, 1067–1078.Google Scholar
First citation Gerstein, M., Tsai, J. & Levitt, M. (1995). The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. J. Mol. Biol. 249, 955–966.Google Scholar
First citation Grant, J. A. & Pickup, B. T. (1995). A Gaussian description of molecular shape. J. Phys. Chem. 99, 3503–3510.Google Scholar
First citation Greer, J. & Bush, B. L. (1978). Macromolecular shape and surface maps by solvent exclusion. Proc. Natl Acad. Sci. USA, 75, 303–307.Google Scholar
First citation Harber, J., Bernhardt, G., Lu, H.-H., Sgro, J.-Y. & Wimmer, E. (1995). Canyon rim residues, including antigenic determinants, modulate serotype-specific binding of polioviruses to mutants of the poliovirus receptor. Virology, 214, 559–570.Google Scholar
First citation Harpaz, Y., Gerstein, M. & Chothia, C. (1994). Volume changes on protein folding. Structure, 2, 641–649.Google Scholar
First citation Hermann, R. B. (1977). Use of solvent cavity area and number of packed solvent molecules around a solute in regard to hydrocarbon solubilities and hydrophobic interactions. Proc. Natl Acad. Sci. USA, 74, 4144–4195.Google Scholar
First citation Hubbard, S. J. & Argos, P. (1994). Cavities and packing at protein interfaces. Protein Sci. 3, 2194–2206.Google Scholar
First citation Hubbard, S. J. & Argos, P. (1995). Evidence on close packing and cavities in proteins. Curr. Opin. Biotechnol. 6, 375–381.Google Scholar
First citation Kapp, O. H., Moens, L., Vanfleteren, J., Trotman, C. N. A., Suzuki, T. & Vinogradov, S. N. (1995). Alignment of 700 globin sequences: extent of amino acid substitution and its correlation with variation in volume. Protein Sci. 4, 2179–2190.Google Scholar
First citation Kauzmann, W. (1959). Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63.Google Scholar
First citation Kelly, J. A., Sielecki, A. R., Sykes, B. D., James, M. N. & Phillips, D. C. (1979). X-ray crystallography of the binding of the bacterial cell wall trisaccharaide NAM-NAG-NAM to lysozymes. Nature (London), 282, 875–878.Google Scholar
First citation Kim, K. H., Willingmann, P., Gong, Z. X., Kremer, M. J., Chapman, M. S., Minor, I., Oliveira, M. A., Rossmann, M. G., Andries, K., Diana, G. D., Dutko, F. J., McKinlay, M. A. & Pevear, D. C. (1993). A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230, 206–227.Google Scholar
First citation Kleywegt, G. J. & Jones, T. A. (1994). Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst. D50, 178–185.Google Scholar
First citation Kocher, J. P., Prevost, M., Wodak, S. J. & Lee, B. (1996). Properties of the protein matrix revealed by the free energy of cavity formation. Structure, 4, 1517–1529.Google Scholar
First citation Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.Google Scholar
First citation Kuhn, L. A., Siani, M. A., Pique, M. E., Fisher, C. L., Getzoff, E. D. & Tainer, J. A. (1992). The interdependence of protein surface topography and bound water molecules revealed by surface accessibility and fractal density measures. J. Mol. Biol. 228, 13–22.Google Scholar
First citation Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.Google Scholar
First citation Leicester, S. E., Finney, J. L. & Bywater, R. P. (1988). Description of molecular surface shape using Fourier descriptors. J. Mol. Graphics, 6, 104–108.Google Scholar
First citation Levitt, M., Hirshberg, M., Sharon, R. & Daggett, V. (1995). Potential energy function and parameters for simulations of the molecular dynamics of proteins and nucleic acids in solution. Comput. Phys. Comm. 91, 215–231.Google Scholar
First citation Lewis, M. & Rees, D. C. (1985). Fractal surfaces of proteins. Science, 230, 1163–1165.Google Scholar
First citation Lim, V. I. & Ptitsyn, O. B. (1970). On the constancy of the hydrophobic nucleus volume in molecules of myoglobins and hemoglobins. Mol. Biol. (USSR), 4, 372–382.Google Scholar
First citation Madan, B. & Lee, B. (1994). Role of hydrogen bonds in hydrophobicity: the free energy of cavity formation in water models with and without the hydrogen bonds. Biophys. Chem. 51, 279–289.Google Scholar
First citation Matthews, B. W., Morton, A. G. & Dahlquist, F. W. (1995). Use of NMR to detect water within nonpolar protein cavities. (Letter.) Science, 270, 1847–1849.Google Scholar
First citation Merritt, E. A. & Bacon, D. J. (1997). Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–525.Google Scholar
First citation Molecular Structure Corporation (1995). Insight II user guide. Biosym/MSI, San Diego.Google Scholar
First citation Nemethy, G., Pottle, M. S. & Scheraga, H. A. (1983). Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions and hydrogen bond interactions for the naturally occurring amino acids. J. Phys. Chem. 87, 1883–1887.Google Scholar
First citation Nicholls, A. (1992). GRASP: graphical representation and analysis of surface properties. New York: Columbia University.Google Scholar
First citation Nicholls, A. & Honig, B. (1991). A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12, 435–445.Google Scholar
First citation Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar
First citation Olson, N., Kolatkar, P., Oliveira, M. A., Cheng, R. H., Greve, J. M., McClelland, A., Baker, T. S. & Rossmann, M. G. (1993). Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl Acad. Sci. USA, 90, 507–511.Google Scholar
First citation O'Rourke, J. (1994). Computational geometry in C. Cambridge University Press.Google Scholar
First citation Palmenberg, A. C. (1989). Sequence alignments of picornaviral capsid proteins. In Molecular aspects of picornavirus infection and detection, edited by B. L. Semler & E. Ehrenfeld, pp. 211–241. Washington DC: American Society for Microbiology.Google Scholar
First citation Pattabiraman, N., Ward, K. B. & Fleming, P. J. (1995). Occluded molecular surface: analysis of protein packing. J. Mol. Recognit. 8, 334–344.Google Scholar
First citation Pauling, L. (1960). The nature of the chemical bond, 3rd ed. Ithaca: Cornell University Press. Google Scholar
First citation Peters, K. P., Fauck, J. & Frommel, C. (1996). The automatic search for ligand binding sites in proteins of known three-dimensional structure using only geometric criteria. J. Mol. Biol. 256, 201–213.Google Scholar
First citation Petitjean, M. (1994). On the analytical calculation of van der Waals surfaces and volumes: some numerical aspects. J. Comput. Chem. 15, 1–10.Google Scholar
First citation Pontius, J., Richelle, J. & Wodak, S. J. (1996). Deviations from standard atomic volumes as a quality measure for protein crystal structures. J. Mol. Biol. 264, 121–136.Google Scholar
First citation Procacci, P. & Scateni, R. (1992). A general algorithm for computing Voronoi volumes: application to the hydrated crystal of myoglobin. Int. J. Quant. Chem. 42, 151–152.Google Scholar
First citation Rashin, A. A., Iofin, M. & Honig, B. (1986). Internal cavities and buried waters in globular proteins. Biochemistry, 25, 3619–3625.Google Scholar
First citation Reynolds, J. A., Gilbert, D. B. & Tanford, C. (1974). Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc. Natl Acad. Sci. USA, 71, 2925–2927.Google Scholar
First citation Richards, F. M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1–14.Google Scholar
First citation Richards, F. M. (1977). Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 6, 151–176.Google Scholar
First citation Richards, F. M. (1979). Packing defects, cavities, volume fluctuations, and access to the interior of proteins. Including some general comments on surface area and protein structure. Carlsberg Res. Commun. 44, 47–63.Google Scholar
First citation Richards, F. M. (1985). Calculation of molecular volumes and areas for structures of known geometry. Methods Enzymol. 115, 440–464.Google Scholar
First citation Richards, F. M. & Lim, W. A. (1994). An analysis of packing in the protein folding problem. Q. Rev. Biophys. 26, 423–498.Google Scholar
First citation Richmond, T. J. (1984). Solvent accessible surface area and excluded volume in proteins: analytical equations for overlapping spheres and implications for the hydrophobic effect. J. Mol. Biol. 178, 63–89.Google Scholar
First citation Richmond, T. J. & Richards, F. M. (1978). Packing of alpha-helices: geometrical constraints and contact areas. J. Mol. Biol. 119, 537–555.Google Scholar
First citation Rossmann, M. G. (1989). The canyon hypothesis. J. Biol. Chem. 264, 14587–14590.Google Scholar
First citation Rossmann, M. G. & Palmenberg, A. C. (1988). Conservation of the putative receptor attachment site in picornaviruses. Virology, 164, 373–382.Google Scholar
First citation Rowland, R. S. & Taylor, R. (1996). Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii. J. Phys. Chem. 100, 7384–7391.Google Scholar
First citation Sgro, J.-Y. (1996). Virus visualization. In Encyclopedia of virology plus (CD-ROM version), edited by R. G. Webster & A. Granoff. San Diego: Academic Press.Google Scholar
First citation Sharp, K. A., Nicholls, A., Fine, R. F. & Honig, B. (1991). Reconciling the magnitude of the microscopic and macroscopic hydrophobic effects. Science, 252, 107–109.Google Scholar
First citation Sherry, B., Mosser, A. G., Colonno, R. J. & Rueckert, R. R. (1986). Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. J. Virol. 57, 246–257.Google Scholar
First citation Sherry, B. & Rueckert, R. (1985). Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53, 137–143.Google Scholar
First citation Shrake, A. & Rupley, J. A. (1973). Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371.Google Scholar
First citation Sibbald, P. R. & Argos, P. (1990). Weighting aligned protein or nucleic acid sequences to correct for unequal representation. J. Mol. Biol. 216, 813–818.Google Scholar
First citation Singh, R. K., Tropsha, A. & Vaisman, I. I. (1996). Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues. J. Comput. Biol. 3, 213–222.Google Scholar
First citation Sreenivasan, U. & Axelsen, P. H. (1992). Buried water in homologous serine proteases. Biochemistry, 31, 12785–12791.Google Scholar
First citation Tanford, C. (1997). How protein chemists learned about the hydrophobicity factor. Protein Sci. 6, 1358–1366.Google Scholar
First citation Tanford, C. H. (1979). Interfacial free energy and the hydrophobic effect. Proc. Natl Acad. Sci. USA, 76, 4175–4176.Google Scholar
First citation Ten Eyck, L. F. (1977). Efficient structure-factor calculation for large molecules by the fast Fourier transform. Acta Cryst. A33, 486–492.Google Scholar
First citation Tsai, J., Gerstein, M. & Levitt, M. (1996). Keeping the shape but changing the charges: a simulation study of urea and its isosteric analogues. J. Chem. Phys. 104, 9417–9430.Google Scholar
First citation Tsai, J., Gerstein, M. & Levitt, M. (1997). Estimating the size of the minimal hydrophobic core. Protein Sci. 6, 2606–2616.Google Scholar
First citation Tsai, J., Taylor, R., Chothia, C. & Gerstein, M. (1999). The packing density in proteins: standard radii and volumes. J. Mol. Biol. 290, 253–266.Google Scholar
First citation Tsai, J., Voss, N. & Gerstein, M. (2001). Voronoi calculations of protein volumes: sensitivity analysis and parameter database. Bioinformatics. In the press.Google Scholar
First citation Voronoi, G. F. (1908). Nouvelles applications des paramétres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 134, 198–287.Google Scholar
First citation Williams, M. A., Goodfellow, J. M. & Thornton, J. M. (1994). Buried waters and internal cavities in monomeric proteins. Protein Sci. 3, 1224–1235.Google Scholar
First citation Wodak, S. J. & Janin, J. (1980). Analytical approximation to the accessible surface areas of proteins. Proc. Natl Acad. Sci. USA, 77, 1736–1740.Google Scholar
First citation Xie, Q. & Chapman, M. S. (1996). Canine parvovirus capsid structure, analyzed at 2.9 Å resolution. J. Mol. Biol. 264, 497–520.Google Scholar
First citation Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy, G., Ellington, W. R. & Chapman, M. S. (1998). Transition state structure of arginine kinase: implications for catalysis of bimolecular reactions. Proc. Natl Acad. Sci. USA, 95, 8449–8454.Google Scholar