International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 22.1, p. 531   | 1 | 2 |

Section 22.1.1.2.1. Volume in terms of Voronoi polyhedra: overview

M. Gersteina* and F. M. Richardsa

22.1.1.2.1. Volume in terms of Voronoi polyhedra: overview

| top | pdf |

Protein volume can be defined in a straightforward sense through a particular geometric construction called the Voronoi polyhedron. In essence, this construction provides a useful way of partitioning space amongst a collection of atoms. Each atom is surrounded by a single convex polyhedron and allocated the space within it (Fig. 22.1.1.1)[link]. The faces of Voronoi polyhedra are formed by constructing dividing planes perpendicular to vectors connecting atoms, and the edges of the polyhedra result from the intersection of these planes.

[Figure 22.1.1.1]

Figure 22.1.1.1 | top | pdf |

The Voronoi construction in two and three dimensions. Representative Voronoi polyhedra from 1CSE (subtilisin) are shown. (a) Six polyhedra around the atoms in a Phe ring. (b) A single polyhedron around the side-chain hydroxyl oxygen (OG) of a serine. (c) A schematic showing the construction of a Voronoi polyhedron in two dimensions. The broken lines indicate planes that were initially included in the polyhedron but then removed by the `chopping-down' procedure (see Fig. 22.1.1.4[link]).

Voronoi polyhedra were originally developed by Voronoi (1908)[link] nearly a century ago. Bernal & Finney (1967)[link] used them to study the structure of liquids in the 1960s. However, despite the general utility of these polyhedra, their application to proteins was limited by a serious methodological difficulty. While the Voronoi construction is based on partitioning space amongst a collection of `equal' points, all protein atoms are not equal. Some are clearly larger than others. In 1974, a solution was found to this problem (Richards, 1974[link]), and since then Voronoi polyhedra have been applied to proteins.

References

First citation Bernal, J. D. & Finney, J. L. (1967). Random close-packed hard-sphere model II. Geometry of random packing of hard spheres. Discuss. Faraday Soc. 43, 62–69.Google Scholar
First citation Richards, F. M. (1974). The interpretation of protein structures: total volume, group volume distributions and packing density. J. Mol. Biol. 82, 1–14.Google Scholar
First citation Voronoi, G. F. (1908). Nouvelles applications des paramétres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 134, 198–287.Google Scholar








































to end of page
to top of page