International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 22.1, pp. 543-545   | 1 | 2 |

Section 22.1.2.4. Graphical representations of shape and properties

M. S. Chapmanb* and M. L. Connollyc

22.1.2.4. Graphical representations of shape and properties

| top | pdf |

22.1.2.4.1. Realistic

| top | pdf |

22.1.2.4.1.1. Shaded backbone

| top | pdf |

With very large complexes, such as viruses, the surface features to be viewed are obvious at low resolution. In a very simple yet effective representation popularized by the laboratories of David Stuart and Jim Hogle, a Cα trace is `depth cued' (shaded) according to the distance from the centre of mass (Acharya et al., 1990[link]; Fig. 1 for example). The impression of three dimensions probably results from the similarity of the shading to highlighting. The method is most effective for large complexes in which there are sufficient Cα atoms to give a dense impression of a surface.

22.1.2.4.1.2. `Connolly' and solid polyhedral surfaces

| top | pdf |

In one of the earliest surface graphical representations, dots were drawn for each Connolly surface dot, using vector-graphics terminals. With the improved graphics capability of modern computers, dot representations have been replaced by ones in which solid polyhedra are drawn with a large enough number of small triangular faces such that the surface appears smooth. These representations are clearer, because atoms in the foreground obscure those in the background.

22.1.2.4.1.3. Photorealistic rendering

| top | pdf |

Depth and three-dimensional relationships are most easily represented by stereovision or rotation of objects in real time on a computer screen. Graphics engines for interactive computers compromise quality for the speed necessary for interactive response, but simple depth cueing (combined with motion or stereo) is sufficient for good 3D representation. For still and/or non-stereo images more common in publications, more sophisticated rendering is helpful and possible now that speed is not a constraint. In Raster3D (Merritt & Bacon, 1997[link]), multiple-light-source shading and highlighting is added, with individual calculations for each fine pixel. These are dependent on the directions of the normals to the surface, which are calculated analytically for spherical surfaces. More complicated surfaces, input as connected triangles, have surfaces rendered raster, pixel by pixel, by interpolating between the surface-normal vectors at the vertices of the surrounding triangle. Together, this leads to a high-quality smooth image that conveys much of the three-dimensionality of molecular surfaces.

22.1.2.4.1.4. GRASP surfaces

| top | pdf |

GRASP is currently perhaps the most popular program for the display of molecular surfaces. Readers are referred to the program documentation (Nicholls, 1992[link]) or a paper that tangentially describes an early implementation (Nicholls et al., 1991[link]). The molecular or accessible surface is determined by the marching-cube algorithm. The surface is filled using methods that make modest compromises on photorealistic light reflection etc., but take advantage of machine-dependent Silicon Graphics surface rendering to perform the display fast enough for interactive adjustment of the view.

The most powerful part of the program is the ability to colour according to properties mapped to the surface (see Fig. 22.1.2.2[link]). These may be values of (say) electrostatic potential interpolated from a three-dimensional lattice. Much has been learned about many proteins from the potentials determined by solution of the Poisson–Boltzmann equation (Nicholls & Honig, 1991[link]). The electrostatic complementarity of binding surfaces has often been readily apparent in ways that were not obvious from Coulombic calculations that ignore screening or from calculations and graphics representations that treat the charges of individual atoms as independent entities.

[Figure 22.1.2.2]

Figure 22.1.2.2 | top | pdf |

GRASP example. The larger picture shows the molecular surface of arginine kinase (Zhou et al., 1998[link]) with the domains and a loop moved to the open configuration seen in a homologous creatine kinase structure (Fritz-Wolf et al., 1996[link]). The surface, coloured with positive charge blue and negative charge red, demonstrates that the active-site pocket (centre) is the most positively charged part of the structure. It complements the negatively charged phosphates of the transition-state analogue components that are shown, moved as a rigid body to the bottom right. They are shown in van der Waals representation, in which oxygens are red, carbons black and nitrogens blue.

Many other properties can be mapped to the surface. These include properties of the atoms associated with that part of the surface (such as thermal factors), curvature of the surface calculated from adjacent atoms (Nicholls & Honig, 1991[link]), or distance to the nearest part of the surface of an adjacent molecule. GRASP is now used to illustrate complicated molecular structures, in part because it also supports the superimposition of other objects over the molecular surface. These include the representation of molecules with CPK spheres and/or bonds, and the representation of electrostatic potentials with field lines, dipole vectors etc.

22.1.2.4.1.5. Implementations in popular packages

| top | pdf |

Commercial packages use variants of the methods discussed above. For example, surfaces are drawn in the Insight II molecular modelling system using the Connolly dot algorithm (Molecular Structure Corporation, 1995[link]).

22.1.2.4.2. Schematic and two-dimensional representations such as `roadmap'

| top | pdf |

For their work on viruses, Rossmann & Palmenberg (1988)[link] introduced a highly schematic representation in which individual amino acids were labelled. The methods were extended by Chapman (1993)[link] to other proteins and to the automatic display of features such as topology, sequence similarity and hydrophobicity. Roadmaps sacrifice a realistic impression of shape for the ability to show the locations and properties of constituent surface atoms or residues. This has been important in combining the power of structure and molecular biology in understanding function. Potential sites of mutation are readily identified without substantial molecular-graphics resources, and phenotypes of mutants are readily mapped to the surface and compared with the physiochemical properties to reveal structure–function correlations.

For a set of projection vectors, the intersection points with the first van der Waals (or solvent-accessible) surface of an atom are calculated by basic vector algebra. The atom is identified so that when the projection is mapped to a plane for display, the boundaries of each atom or amino acid can be determined. The atoms or amino acids can then be coloured, shaded, outlined, contoured, or labelled according to parameters that are either calculated from the coordinates (such as distance from the centre of mass), read from a file (such as sequence similarity), or follow properties that are dependent on the residue type (e.g. hydrophobicity) or atom type [e.g. atomic solvation parameters (Eisenberg & McLachlan, 1986[link])].

Several types of projections can be used. The simplest is similar to that used by most other surface-imaging programs. A set of parallel projection vectors is mapped to a 2D grid. An example is shown in Fig. 22.1.2.3[link]. This view avoids distortions, but only one side of the molecule is visualized. Roadmaps are flat, two-dimensional projections that cannot be rotated in real time to reveal other views. Three-dimensionality is limited to an extension by Jean-Yves Sgro that maps the parallel projection of one view to a three-dimensional surface shell that can be rotated with interactive graphics and/or viewed with stereo imaging (Harber et al., 1995[link]; Sgro, 1996[link]). However, the schematic nature of roadmaps leads to the ability to view all parts of the molecule simultaneously.

[Figure 22.1.2.3]

Figure 22.1.2.3 | top | pdf |

(a) Solvent-accessible surface topology of a rhinovirus 14–drug complex (Kim et al., 1993[link]). The triangle shows one of the 60 symmetry-equivalent faces of an icosadeltahedron that constitute the entire virus surface. The surface is coloured and contoured according to distance from the centre of the virus, red being the most elevated. Residues are marked with dotted lines and labelled with residue type and number. A letter starting the residue label indicates a symmetry equivalent. The first numeral indicates the protein number (1 to 4), which is followed by the three-digit residue number. A depression, the `canyon', is where the cellular receptor is bound (Olson et al., 1993[link]). The locations of the dominant neutralizing immunogenic (NIm) sites were determined through the sequencing of escape mutants (Sherry & Rueckert, 1985[link]; Sherry et al., 1986[link]) and are labelled `NIm'. (b) The same view is coloured according to sequence similarity (Palmenberg, 1989[link]; Chapman, 1994[link]), with blue being the most conserved rhinoviral amino acids and red being the most variable. Comparison of diagrams like these suggested the `canyon hypothesis' (Rossmann, 1989[link]). The prediction has proved largely true in that the sites of receptor attachment in several picornaviruses would be depressed areas whose sequences could be more highly conserved because they were partially inaccessible to antibodies and therefore not under the same selective pressure to mutate. In this and other applications, the schematic nature of these diagrams has helped in the collation of structure with data arising from the known phenotypes of site-directed or natural mutants. Part (b) is reproduced from Chapman (1993)[link]. Copyright (1993) The Protein Society. Reprinted with the permission of Cambridge University Press.

To view all parts of the molecule, cylindrical projections are used that are similar to those used in atlases. This is possible because the representation is schematic (not realistic), and longitudinal distortion, similar to that near the poles in world maps, is acceptable. The surface is projected outwards radially onto a cylinder that wraps around the macromolecule (Fig. 22.1.2.4)[link]. Active-site clefts, drug or inhibitor binding sites and pores can be similarly illustrated by projecting their surfaces outward (from the axis) onto a cylinder that encloses the pore, pocket, or cleft. Such clefts are rarely straight, but with some distortion a satisfactory representation is possible by segmenting the cylinder, so that its axis follows the (curved) centre of the binding site or pore (Fig. 22.1.2.4)[link].

[Figure 22.1.2.4]

Figure 22.1.2.4 | top | pdf |

Different projections illustrated with lysozyme. (a) Lysozyme (Blake et al., 1965[link]; Diamond, 1974[link]) is sketched with MOLSCRIPT (Kraulis, 1991[link]) and shown with a ribbon indicting the active-site cleft (Kelly et al., 1979[link]). A cylindrical surface shown unrolled in (b) is shown in (a) wrapped around lysozyme. Vectors orthogonal to the now cylindrical illustrative surface are extended inwards until they intersect with the sphere. Vectors then run towards the centre of the molecule, and their intersections with the solvent-accessible surface are projected back upon the cylinder [unrolled in (b)]. (b) The surface is shaded according to distance from the centre, revealing the substrate-binding cleft as lighter shading. Details of active-site residues are revealed in (c) with a different type of projection. A segmented bent cylinder was traced along the substrate-binding cleft. The surface shows the projection outwards from points on the cylindrical axis. This reveals the amino acids likely to be in most intimate contact with the substrate. Similar plots, coloured according to charge, atomic solvation parameters, or hydrophobicity, can reveal the nature of predominant chemical interactions. This figure is reproduced from Chapman (1993)[link]. Copyright (1993) The Protein Society. Reprinted with the permission of Cambridge University Press.

References

First citation Molecular Structure Corporation (1995). Insight II user guide. Biosym/MSI, San Diego.Google Scholar
First citation Acharya, R., Fry, E., Logan, D., Stuart, D., Brown, F., Fox, G. & Rowlands, D. (1990). The three-dimensional structure of foot-and-mouth disease virus. New aspects of positive-strand RNA viruses, edited by M. A. Brinton & S. X. Heinz, pp. 319–327. Washington DC: American Society for Microbiology.Google Scholar
First citation Chapman, M. S. (1993). Mapping the surface properties of macromolecules. Protein Sci. 2, 459–469.Google Scholar
First citation Eisenberg, D. & McLachlan, A. D. (1986). Solvation energy in protein folding and binding. Nature (London), 319, 199–203.Google Scholar
First citation Harber, J., Bernhardt, G., Lu, H.-H., Sgro, J.-Y. & Wimmer, E. (1995). Canyon rim residues, including antigenic determinants, modulate serotype-specific binding of polioviruses to mutants of the poliovirus receptor. Virology, 214, 559–570.Google Scholar
First citation Merritt, E. A. & Bacon, D. J. (1997). Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–525.Google Scholar
First citation Nicholls, A. (1992). GRASP: graphical representation and analysis of surface properties. New York: Columbia University.Google Scholar
First citation Nicholls, A. & Honig, B. (1991). A rapid finite difference algorithm, utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12, 435–445.Google Scholar
First citation Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar
First citation Rossmann, M. G. & Palmenberg, A. C. (1988). Conservation of the putative receptor attachment site in picornaviruses. Virology, 164, 373–382.Google Scholar
First citation Sgro, J.-Y. (1996). Virus visualization. In Encyclopedia of virology plus (CD-ROM version), edited by R. G. Webster & A. Granoff. San Diego: Academic Press.Google Scholar








































to end of page
to top of page