Tables for
Volume F
Crystallography of biological macromolecues
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 22.3, pp. 553-557   | 1 | 2 |

Chapter 22.3. Electrostatic interactions in proteins

K. A. Sharpa*

aE. R. Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
Correspondence e-mail:


Antosiewicz, J., McCammon, J. A. & Gilson, M. K. (1994). Prediction of pH-dependent properties of proteins. J. Mol. Biol. 238, 415–436.Google Scholar
Åqvist, J., Luecke, H., Quiocho, F. A. & Warshel, A. (1991). Dipoles localized at helix termini of proteins stabilize charges. Proc. Natl Acad. Sci. USA, 88, 2026–2030.Google Scholar
Bacquet, R. & Rossky, P. (1984). Ionic atmosphere of rodlike polyelectrolytes. A hypernetted chain study. J. Phys. Chem. 88, 2660.Google Scholar
Bashford, D. & Karplus, M. (1990). pKa's of ionizable groups in proteins: atomic detail from a continuum electrostatic model. Biochemistry, 29, 10219–10225.Google Scholar
Beroza, P., Fredkin, D., Okamura, M. & Feher, G. (1991). Protonation of interacting residues in a protein by a Monte-Carlo method. Proc. Natl Acad. Sci. USA, 88, 5804–5808.Google Scholar
Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. & Nicholls, A. (1994). The fast multipole boundary-element method for molecular electrostatics – an optimal approach for large systems. J. Comput. Chem. 16, 898–913.Google Scholar
Bruccoleri, R. E., Novotny, J., Sharp, K. A. & Davis, M. E. (1996). Finite difference Poisson–Boltzmann electrostatic calculations: increased accuracy achieved by harmonic dielectric smoothing and charge anti-aliasing. J. Comput. Chem. 18, 268–276.Google Scholar
Davis, M. E. (1994). The inducible multipole solvation model – a new model for solvation effects on solute electrostatics. J. Chem. Phys. 100, 5149–5159.Google Scholar
Davis, M. E. & McCammon, J. A. (1989). Solving the finite difference linear Poisson Boltzmann equation: comparison of relaxational and conjugate gradient methods. J. Comput. Chem. 10, 386–395.Google Scholar
Gilson, M. (1993). Multiple-site titration and molecular modeling: 2. Rapid methods for computing energies and forces for ionizable groups in proteins. Proteins Struct. Funct. Genet. 15, 266–282.Google Scholar
Gilson, M., Davis, M., Luty, B. & McCammon, J. (1993). Computation of electrostatic forces on solvated molecules using the Poisson–Boltzmann equation. J. Phys. Chem. 97, 3591–3600.Google Scholar
Gilson, M. & Honig, B. (1986). The dielectric constant of a folded protein. Biopolymers, 25, 2097–2119.Google Scholar
Gilson, M., McCammon, J. & Madura, J. (1995). Molecular dynamics simulation with continuum solvent. J. Comput. Chem. 16, 1081–1095.Google Scholar
Gilson, M., Sharp, K. A. & Honig, B. (1988). Calculating the electrostatic potential of molecules in solution: method and error assessment. J. Comput. Chem. 9, 327–335.Google Scholar
Holst, M., Kozack, R., Saied, F. & Subramaniam, S. (1994). Protein electrostatics – rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson–Boltzmann equation. J. Biomol. Struct. Dyn. 11, 1437–1445.Google Scholar
Holst, M. & Saied, F. (1993). Multigrid solution of the Poisson–Boltzmann equation. J. Comput. Chem. 14, 105–113.Google Scholar
Jayaram, B., Fine, R., Sharp, K. A. & Honig, B. (1989). Free energy calculations of ion hydration: an analysis of the Born model in terms of microscopic simulations. J. Phys. Chem. 93, 4320–4327.Google Scholar
Jayaram, B., Sharp, K. A. & Honig, B. (1989). The electrostatic potential of B-DNA. Biopolymers, 28, 975–993.Google Scholar
Jean-Charles, A., Nicholls, A., Sharp, K., Honig, B., Tempczyk, A., Hendrickson, T. & Still, C. (1990). Electrostatic contributions to solvation energies: comparison of free energy perturbation and continuum calculations. J. Am. Chem. Soc. 113, 1454–1455.Google Scholar
Langsetmo, K., Fuchs, J. A., Woodward, C. & Sharp, K. A. (1991). Linkage of thioredoxin stability to titration of ionizable groups with perturbed pKa. Biochemistry, 30, 7609–7614.Google Scholar
Lee, F., Chu, Z. & Warshel, A. (1993). Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the Polaris and Enzymix programs. J. Comput. Chem. 14, 161–185.Google Scholar
Lee, F. S., Chu, Z. T., Bolger, M. B. & Warshel, A. (1992). Calculations of antibody–antigen interactions: microscopic and semi-microscopic evaluation of the free energies of binding of phosphorylcholine analogs to Mcpc603. Protein Eng. 5, 215–228.Google Scholar
Misra, V., Hecht, J., Sharp, K., Friedman, R. & Honig, B. (1994). Salt effects on protein–DNA interactions: the lambda cI repressor and Eco R1 endonuclease. J. Mol. Biol. 238, 264–280.Google Scholar
Misra, V. & Honig, B. (1995). On the magnitude of the electrostatic contribution to ligand–DNA interactions. Proc. Natl Acad. Sci. USA, 92, 4691–4695.Google Scholar
Misra, V., Sharp, K., Friedman, R. & Honig, B. (1994). Salt effects on ligand–DNA binding: minor groove antibiotics. J. Mol. Biol. 238, 245–263.Google Scholar
Mohan, V., Davis, M. E., McCammon, J. A. & Pettitt, B. M. (1992). Continuum model calculations of solvation free energies – accurate evaluation of electrostatic contributions. J. Phys. Chem. 96, 6428–6431.Google Scholar
Murthy, C. S., Bacquet, R. J. & Rossky, P. J. (1985). Ionic distributions near polyelectrolytes. A comparison of theoretical approaches. J. Phys. Chem. 89, 701.Google Scholar
Nakamura, H., Sakamoto, T. & Wada, A. (1988). A theoretical study of the dielectric constant of a protein. Protein Eng. 2, 177–183.Google Scholar
Nicholls, A. & Honig, B. (1991). A rapid finite difference algorithm utilizing successive over-relaxation to solve the Poisson–Boltzmann equation. J. Comput. Chem. 12, 435–445.Google Scholar
Oberoi, H. & Allewell, N. (1993). Multigrid solution of the nonlinear Poisson–Boltzmann equation and calculation of titration curves. Biophys. J. 65, 48–55.Google Scholar
Olmsted, M. C., Anderson, C. F. & Record, M. T. (1989). Monte Carlo description of oligoelectrolyte properties of DNA oligomers. Proc. Natl Acad. Sci. USA, 86, 7766–7770.Google Scholar
Olmsted, M. C., Anderson, C. F. & Record, M. T. (1991). Importance of oligoelectrolyte end effects for the thermodynamics of conformational transitions of nucleic acid oligomers. Biopolymers, 31, 1593–1604.Google Scholar
Pack, G., Garrett, G., Wong, L. & Lamm, G. (1993). The effect of a variable dielectric coefficient and finite ion size on Poisson–Boltzmann calculations of DNA–electrolyte systems. Biophys. J. 65, 1363–1370.Google Scholar
Pack, G. R. & Klein, B. J. (1984). The distribution of electrolyte ions around the B- and Z-conformers of DNA. Biopolymers, 23, 2801.Google Scholar
Pack, G. R., Wong, L. & Prasad, C. V. (1986). Counterion distribution around DNA. Nucleic Acids Res. 14, 1479.Google Scholar
Rashin, A. A. (1990). Hydration phenomena, classical electrostatics and the boundary element method. J. Phys. Chem. 94, 725–733.Google Scholar
Record, T., Olmsted, M. & Anderson, C. (1990). Theoretical studies of the thermodynamics of ion interaction with DNA. In Theoretical biochemistry and molecular biophysics. New York: Adenine Press.Google Scholar
Reiner, E. S. & Radke, C. J. (1990). Variational approach to the electrostatic free energy in charged colloidal suspensions. J. Chem. Soc. Faraday Trans. 86, 3901.Google Scholar
Schaeffer, M. & Frommel, C. (1990). A precise analytical method for calculating the electrostatic energy of macromolecules in aqueous solution. J. Mol. Biol. 216, 1045–1066.Google Scholar
Sharp, K. & Honig, B. (1990). Calculating total electrostatic energies with the non-linear Poisson–Boltzmann equation. J. Phys. Chem. 94, 7684–7692.Google Scholar
Sharp, K. A., Friedman, R., Misra, V., Hecht, J. & Honig, B. (1995). Salt effects on polyelectrolyte–ligand binding: comparison of Poisson–Boltzmann and limiting law counterion binding models. Biopolymers, 36, 245–262.Google Scholar
Simonson, T. & Brooks, C. L. (1996). Charge screening and the dielectric-constant of proteins: insights from molecular-dynamics. J. Am. Chem. Soc. 118, 8452–8458.Google Scholar
Simonson, T. & Brünger, A. (1994). Solvation free energies estimated from a macroscopic continuum theory. J. Phys. Chem. 98, 4683–4694.Google Scholar
Simonson, T. & Perahia, D. (1995). Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution. Proc. Natl Acad. Sci. USA, 92, 1082–1086.Google Scholar
Sitkoff, D., Sharp, K. & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. J. Phys. Chem. 98, 1978–1988.Google Scholar
Slagle, S., Kozack, R. E. & Subramaniam, S. (1994). Role of electrostatics in antibody–antigen association: anti-hen egg lysozyme/lysozyme complex (HyHEL–5/HEL). J. Biomol. Struct. Dyn. 12, 439–456.Google Scholar
Smith, P., Brunne, R., Mark, A. & van Gunsteren, W. (1993). Dielectric properties of trypsin inhibitor and lysozyme calculated from molecular dynamics simulations. J. Phys. Chem. 97, 2009–2014.Google Scholar
Still, C., Tempczyk, A., Hawley, R. & Hendrickson, T. (1990). Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129.Google Scholar
Takashima, S. & Schwan, H. P. (1965). Dielectric constant measurements on dried proteins. J. Phys. Chem. 69, 4176.Google Scholar
Warshel, A. & Åqvist, J. (1991). Electrostatic energy and macromolecular function. Annu. Rev. Biophys. Biophys. Chem. 20, 267–298.Google Scholar
Warshel, A. & Russell, S. (1984). Calculations of electrostatic interactions in biological systems and in solutions. Q. Rev. Biophys. 17, 283.Google Scholar
Warwicker, J. (1994). Improved continuum electrostatic modelling in proteins, with comparison to experiment. J. Mol. Biol. 236, 887–903.Google Scholar
Warwicker, J. & Watson, H. C. (1982). Calculation of the electric potential in the active site cleft due to alpha-helix dipoles. J. Mol. Biol. 157, 671–679.Google Scholar
Wendoloski, J. J. & Matthew, J. B. (1989). Molecular dynamics effects on protein electrostatics. Proteins, 5, 313.Google Scholar
Yang, A., Gunner, M., Sampogna, R., Sharp, K. & Honig, B. (1993). On the calculation of pKa in proteins. Proteins Struct. Funct. Genet. 15, 252–265.Google Scholar
Yoon, L. & Lenhoff, A. (1992). Computation of the electrostatic interaction energy between a protein and a charged suface. J. Phys. Chem. 96, 3130–3134.Google Scholar
Zauhar, R. & Morgan, R. J. (1985). A new method for computing the macromolecular electric potential. J. Mol. Biol. 186, 815–820.Google Scholar
Zhou, H. X. (1994). Macromolecular electrostatic energy within the nonlinear Poisson–Boltzmann equation. J. Phys. Chem. 100, 3152–3162.Google Scholar