International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 23.2, pp. 586-587   | 1 | 2 |

Section 23.2.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions

A. E. Hodela and F. A. Quiochob

aDepartment of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA, and  bHoward Hughes Medical Institute and Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

23.2.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions

| top | pdf |

The presence of an uncompensated negatively charged Asp56 is unusual for an anion-binding site, as observed in PBP. In fact, a related discovery of profound ramification is that the binding-cleft region of PBP has an intense negative electrostatic surface potential (Fig. 23.2.5.3a)[link] (Ledvina et al., 1996[link]). Non-complementarity between the surface potential of a binding region and an anion ligand is not unique to PBP. We have reported similar findings for SBP, a DNA-binding protein, and, even more dramatically, for the redox protein flavodoxin (Fig. 23.2.5.3b)[link] (Ledvina et al., 1996[link]). Evidently, for proteins such as these, which rely on hydrogen-bonding interactions with only uncharged polar residues for anion binding and electrostatic balance, a non-complementary surface potential is not a barrier to binding. This conclusion is supported by very recent fast kinetic studies of binding of phosphate to PBP and the effect of ionic strength on binding (Ledvina et al., 1998[link]).

[Figure 23.2.5.3]

Figure 23.2.5.3| top | pdf |

Electrostatic surface potential of (a) the phosphate-binding protein and (b) flavodoxin. The molecular surface electrostatic potentials, calculated and displayed using GRASP (Nicholls et al., 1991[link]), are −10 kT (red), neutral (white) and +10 kT (blue) [see Ledvina et al. (1996)[link] for more details]. (a) Wild-type phosphate-binding protein based on the X-ray structure of the open cleft, unliganded form (Ledvina et al., 1996[link]). The phosphate-binding site is located in the cleft (with negative surface potential) in the middle of the molecule and between the two domains. (b) Flavodoxin with bound flavin mononucleotide (FMN). The phosphoryl group (P) of the FMN is bound in a pocket with intense negatively charge surface potential. The surface potential was calculated without the bound flavin mononucleotide using the structure from the Protein Data Bank (PDB code: 2fox).

References

First citation Freemont, P. S., Friedman, J. M., Beese, L. S., Sanderson, M. R. & Steitz, T. A. (1988). Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl Acad. Sci. USA, 85, 8924–8928.Google Scholar
First citation Hodel, A. E., Gershon, P. D. & Quiocho, F. A. (1998). Structural basis for sequence non-specific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell, 1, 443–447.Google Scholar
First citation Hodel, A. E., Gershon, P. D., Shi, X., Wang, S. M. & Quiocho, F. A. (1997). Specific protein recognition of an mRNA cap through its alkylated base. (Letter.) Nature Struct. Biol. 4, 350–354.Google Scholar
First citation Kissinger, C. R., Liu, B. S., Martin-Blanco, E., Kornberg, T. B. & Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain–DNA complex at 2.8 Å resolution: a framework for understanding homeodomain–DNA interactions. Cell, 63, 579–590.Google Scholar
First citation Ledvina, P. S., Tsai, A.-H., Wang, Z., Koehl, E. & Quiocho, F. A. (1998). Dominant role of local dipolar interactions in phosphate binding to a receptor cleft with an electronegative charge surface potential: equilibrium, kinetic and crystallographic studies. Protein Sci. 7, 2550–2559.Google Scholar
First citation Ledvina, P. S., Yao, N., Choudhary, A. & Quiocho, F. A. (1996). Negative electrostatic surface potential of protein sites specific for anionic ligands. Proc. Natl Acad. Sci. USA, 93, 6786–6791.Google Scholar
First citation Marcotrigiano, J., Gingras, A. C., Sonenberg, N. & Burley, S. K. (1997). X-ray studies of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Nucleic Acids Symp. Ser. pp. 8–11.Google Scholar
First citation Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association; insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar
First citation Otwinowski, Z., Schevitz, R. W., Zhang, R. G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. & Sigler, P. B. (1988a). Crystal structure of trp repressor/operator complex at atomic resolution. Nature (London), 335, 321–329.Google Scholar
First citation Otwinowski, Z., Schevitz, R. W., Zhang, R. G., Lawson, C. L., Joachimiak, A., Marmorstein, R. Q., Luisi, B. F. & Sigler, P. B. (1988b). Crystal structure of trp repressor/operator complex at atomic resolution. Erratum. Nature (London), 335, 837.Google Scholar
First citation Pavletich, N. P. & Pabo, C. O. (1991). Zinc finger–DNA recognition: crystal structure of a Zif268–DNA complex at 2.1 Å. Science, 252, 809–817.Google Scholar
First citation Shimon, L. J. & Harrison, S. C. (1993). The phage 434 OR2/R1–69 complex at 2.5 Å resolution. J. Mol. Biol. 232, 826–838.Google Scholar
First citation Vyas, N. K., Vyas, M. N. & Quiocho, F. A. (1988). Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. Science, 242, 1290–1295.Google Scholar
First citation Wang, Z., Luecke, H., Yao, N. & Quiocho, F. A. (1997). Nature Struct. Biol. 4, 519–522.Google Scholar








































to end of page
to top of page