International
Tables for Crystallography Volume F Crystallography of biological macromolecules Edited by M. G. Rossmann and E. Arnold © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. F. ch. 23.2, pp. 586-587
Section 23.2.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions |
23.2.5.3. Non-complementary negative electrostatic surface potential of protein sites specific for anions
The presence of an uncompensated negatively charged Asp56 is unusual for an anion-binding site, as observed in PBP. In fact, a related discovery of profound ramification is that the binding-cleft region of PBP has an intense negative electrostatic surface potential (Fig. 23.2.5.3a) (Ledvina et al., 1996
). Non-complementarity between the surface potential of a binding region and an anion ligand is not unique to PBP. We have reported similar findings for SBP, a DNA-binding protein, and, even more dramatically, for the redox protein flavodoxin (Fig. 23.2.5.3b)
(Ledvina et al., 1996
). Evidently, for proteins such as these, which rely on hydrogen-bonding interactions with only uncharged polar residues for anion binding and electrostatic balance, a non-complementary surface potential is not a barrier to binding. This conclusion is supported by very recent fast kinetic studies of binding of phosphate to PBP and the effect of ionic strength on binding (Ledvina et al., 1998
).
References













