International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 23.3, pp. 588-622   | 1 | 2 |
https://doi.org/10.1107/97809553602060000716

Chapter 23.3. Nucleic acids

R. E. Dickersona*

a Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095–1570, USA
Correspondence e-mail: red@mbi.ucla.edu

References

First citation Altona, C., Geise, H. J. & Romers, C. (1968). Conformation of non-aromatic ring compounds, XXIV. On the geometry of the perhydrophenanthrene skeleton in some steroids. Tetrahedron, 24, 13–32. Google Scholar
First citation Altona, C. & Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. J. Am. Chem. Soc. 94, 8205–8212. Google Scholar
First citation Ansevin, A. T. & Wang, A. H. (1990). Evidence for a new Z-type left-handed DNA helix. Nucleic Acids Res. 18, 6119–6126.Google Scholar
First citation Arnott, S. (1970). The geometry of nucleic acids. Prog. Biophys. Mol. Biol. 21, 265–319. Google Scholar
First citation Babcock, M. S. & Olson, W. K. (1994). The effect of mathematics and coordinate system on comparability and `dependencies' of nucleic acid structure parameters. J. Mol. Biol. 237, 98–124. Google Scholar
First citation Babcock, M. S., Pednault, E. & Olson, W. (1993). Nucleic acid structure analysis: a users guide to a collection of new analysis programs. J. Biomol. Struct. Dyn. 11, 597–628. Google Scholar
First citation Babcock, M. S., Pednault, E. & Olson, W. (1994). Nucleic acid structure analysis. Mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. J. Mol. Biol. 237, 125–156.Google Scholar
First citation Basham, B., Eichman, B. F. & Ho, P. S. (1998). The single-crystal structures of Z-DNA. In Oxford handbook of nucleic acid structure, edited by S. Neidle, ch. 7, pp. 200–252. Oxford University Press.Google Scholar
First citation Berman, H. M. (1996). Crystal studies of B-DNA: the answers and the questions. Biopolymers Nucleic Acid Sci. 44, 23–44.Google Scholar
First citation Bugg, C. E., Thomas, J. M., Sundaralingam, M. & Rao, S. T. (1971). Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid consituents and polynucleotides. Biopolymers, 10, 175–219.Google Scholar
First citation Crick, F. H. C. & Watson, J. D. (1954). The complementary structure of deoxyribonucleic acid. Proc. R. Soc. London Ser. A, 223, 80–96.Google Scholar
First citation Crothers, D. M. & Drak, J. (1992). Global features of DNA structure by comparative gel electrophoresis. Methods Enzymol. 212, 46–71.Google Scholar
First citation Crothers, D. M., Haran, T. E. & Nadeau, J. G. (1990). Intrinsically bent DNA. J. Biol. Chem. 265, 7093–7096.Google Scholar
First citation Davies, D. B. (1978). Conformations of nucleosides and nucleotides. Prog. Nucl. Magn. Reson. Spectros. 12, 135–186.Google Scholar
First citation Dickerson, R. E. (1972). The structure and history of an ancient protein. Sci. Am. 226 (April), 58–72.Google Scholar
First citation Dickerson, R. E. (1983). The DNA helix and how it is read. Sci. Am. 249 (December), 94–111.Google Scholar
First citation Dickerson, R. E. (1992). DNA structure from A to Z. Methods Enzymol. 211, 67–111.Google Scholar
First citation Dickerson, R. E. (1997a). Obituary: Irving Geis, 1908–1997. Structure, 5, 1247–1249.Google Scholar
First citation Dickerson, R. E. (1997b). Irving Geis, molecular artist, 1908–1997. Protein Sci. 6, 2843–2844.Google Scholar
First citation Dickerson, R. E. (1997c). Biology in pictures: molecular artistry. Curr. Biol. 7, R720–R741.Google Scholar
First citation Dickerson, R. E. (1998a). Sequence-dependent B-DNA conformation in crystals and in protein complexes. In Structure, motion, interaction and expression of biological macromolecules, edited by R. H. Sarma & M. H. Sarma, pp. 17–36. New York: Adenine Press.Google Scholar
First citation Dickerson, R. E. (1998b). Helix structure and molecular recognition by B-DNA. In Oxford handbook of nucleic acid structure, edited by S. Neidle, ch. 7, pp. 145–197. Oxford University Press.Google Scholar
First citation Dickerson, R. E. (1998c). DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926.Google Scholar
First citation Dickerson, R. E., Bansal, M., Calladine, C. R., Diekmann, S., Hunter, W. N., Kennard, O., Lavery, R., Nelson, H. C. M., Olson, W. K., Saenger, W., Shakked, Z., Sklenar, H., Soumpasis, D. M., Tung, C.-S., von Kitzing, E., Wang, A. H.-J. & Zhurkin, V. B. (1989). Definitions and nomenclature of nucleic acid structure components. EMBO J. 8, 1–4; J. Biomol. Struct. Dyn. 6, 627–634; Nucleic Acids Res. 17, 1797–1803; J. Mol. Biol. 206, 787–791. Google Scholar
First citation Dickerson, R. E. & Chiu, T. K. (1997). Helix bending as a factor in protein/DNA recognition. Biopolymers Nucleic Acid Sci. 44, 361–403.Google Scholar
First citation Dickerson, R. E. & Geis, I. (1969). The structure and action of proteins. New York: Harper & Row and Menlo Park: W. A. Benjamin Co.Google Scholar
First citation Dickerson, R. E. & Geis, I. (1976). Chemistry, matter and the universe. Menlo Park: Benjamin/Cummings Co. Google Scholar
First citation Dickerson, R. E. & Geis, I. (1983). Hemoglobin: structure, function, evolution, and pathology. Menlo Park: Benjamin/Cummings Co.Google Scholar
First citation Dickerson, R. E., Goodsell, D. & Kopka, M. L. (1996). MPD and DNA bending in crystals and in solution. J. Mol. Biol. 256, 108–125.Google Scholar
First citation Dickerson, R. E., Goodsell, D. S., Kopka, M. L. & Pjura, P. E. (1987). The effect of crystal packing on oligonucleotide double helix structure. J. Biomol. Struct. Dyn. 5, 557–579.Google Scholar
First citation Dickerson, R. E., Goodsell, D. S. & Neidle, S. (1994). … the tyranny of the lattice…. Proc. Natl Acad. Sci. USA, 91, 3579–3583.Google Scholar
First citation El Hassan, M. A. & Calladine, C. R. (1997). Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps. Philos. Trans. R. Soc. London A, 355, 43–100.Google Scholar
First citation Feigon, J. (1996). DNA triplexes, quadruplexes & aptamers. In Encyclopedia of nuclear magnetic resonance, edited by D. M. Grant & R. K. Harris, pp. 1726–1731. New York: Wiley.Google Scholar
First citation Franklin, R. E. & Gosling, R. G. (1953). The structure of sodium thymonucleate fibres. I. The influence of water content. Acta Cryst. 6, 673–677.Google Scholar
First citation Haschmeyer, A. E. V. & Rich, A. (1967). Nucleoside conformation: an analysis of steric barriers to rotation about the glycosidic bond. J. Mol. Biol. 27, 369–384.Google Scholar
First citation Herbert, A. & Rich, A. (1996). The biology of left-handed Z-DNA. J. Biol. Chem. 271, 11595–11598.Google Scholar
First citation Ho, P. S. & Mooers, B. H. M. (1996). Z-DNA crystallography. Biopolymers Nucleic Acid Sci. 44, 65–90.Google Scholar
First citation Hoogsteen, K. (1963). The crystal and molecular structure of a hydrogen-bonded complex between 1-methylthymine and 9-methyladenine. Acta Cryst. 16, 907–916.Google Scholar
First citation Hunter, C. A. & Sanders, J. K. M. (1990). The nature of π–π interactions. J. Am. Chem. Soc. 112, 5525–5534.Google Scholar
First citation Juo, Z. S., Chiu, T. K., Leiberman, P. M., Baikalov, I., Berk, A. J. & Dickerson, R. E. (1996). How proteins recognize the TATA box. J. Mol. Biol. 261, 239–254.Google Scholar
First citation Kendrew, J. C. (1961). The three-dimensional structure of a protein molecule. Sci. Am. 205 (December), 96–110.Google Scholar
First citation Kim, J. L., Nikolov, D. B. & Burley, S. K. (1993). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature (London), 365, 520–527.Google Scholar
First citation Kim, Y., Geiger, J. H., Hahn, S. & Sigler, P. B. (1993). Crystal structure of a yeast TBP/TATA-box complex. Nature (London), 365, 512–520.Google Scholar
First citation Koo, H.-S., Drak, J., Rice, J. A. & Crothers, D. M. (1990). Determination of the extent of DNA bending by an adenine-thymine tract. Biochemistry, 29, 4227–4234.Google Scholar
First citation Koo, H.-S., Wu, H.-M. & Crothers, D. M. (1986). DNA bending at adenine-thymine tracts. Nature (London), 320, 501–506.Google Scholar
First citation Kostrewa, D. & Winkler, F. K. (1995). Mg2+ binding to the active site of EcoRV endonuclease: a crystallographic study of complexes with substrate and product DNA at 2 Å resolution. Biochemistry, 34, 683–696.Google Scholar
First citation Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. (1960). The molecular configurations of deoxyribonucleic acid. II. Molecular models and their Fourier transforms. J. Mol. Biol. 2, 38–64.Google Scholar
First citation Lavery, R. & Sklenar, H. (1988). The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dyn. 6, 63–91.Google Scholar
First citation Lavery, R. & Sklenar, H. (1989). Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667. Google Scholar
First citation Leslie, A. G. W., Arnott, S., Chandrasekaran, R. & Ratliff, R. L. (1980). Polymorphism of DNA double helices. J. Mol. Biol. 143, 49–72.Google Scholar
First citation Levitt, M. & Warshel, A. (1978). Extreme conformational flexibility of the furanose ring in DNA and RNA. J. Am. Chem. Soc. 100, 2607–2613.Google Scholar
First citation Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G. & Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science, 271, 1247–1254.Google Scholar
First citation Marini, J. C., Levene, S. D., Crothers, D. M. & Englund, P. T. (1982). Bent helical structures in kinetoplast DNA. Proc. Natl Acad. Sci. USA, 79, 7664–7668.Google Scholar
First citation Nikolov, D. B., Chen, H., Halay, E. D., Hoffman, A., Roeder, R. G. & Burley, S. K. (1996). Crystal structure of a human TATA box-binding protein/TATA element complex. Proc. Natl Acad. Sci. USA, 93, 4862–4867.Google Scholar
First citation Parkinson, G., Wilson, C., Gunasekera, A., Ebright, Y. W., Ebright, R. H. & Berman, H. M. (1996). Structure of the CAP–DNA complex at 2.5 angstroms resolution: a complete picture of the protein–DNA interface. J. Mol. Biol. 260, 395–408.Google Scholar
First citation Pelton, J. G. & Wemmer, D. E. (1989). Structural characterization of a 2:1 distamycin A/d(CGCAAATTGGC) complex by two-dimensional NMR. Proc. Natl Acad. Sci. USA, 86, 5723–5727. Google Scholar
First citation Pelton, J. G. & Wemmer, D. E. (1990). Binding modes of distamycin-A with d(CGCAAATTTGCG)2 determined by two-dimensional NMR. J. Am. Chem. Soc. 112, 1393–1399.Google Scholar
First citation Phillips, D. C. (1966). The three-dimensional structure of an enzyme molecule. Sci. Am. 215 (November), 78–90.Google Scholar
First citation Pohl, F. M. (1976). Polymorphism of a synthetic DNA in solution. Nature (London), 260, 365–366.Google Scholar
First citation Pohl, F. M. & Jovin, T. M. (1972). Salt-induced co-operative conformational change of a syhnthetic DNA: equlibrium and kinetic studies with poly(dG-dC). J. Mol. Biol. 67, 375–396.Google Scholar
First citation Rice, P. A., Yang, S.-W., Mizuuchi, K. & Nash, H. A. (1996). Crystal structure of an IHF–DNA complex: a protein-induced DNA U-turn. Cell, 87, 1295–1306.Google Scholar
First citation Saenger, W. (1984). Principles of nucleic acid structure. New York, Berlin, Heidelberg and Tokyo: Springer-Verlag. Google Scholar
First citation Schneider, B., Neidle, S. & Berman, H. M. (1997). Conformations of the sugar–phosphate backbone in helical DNA crystal structures. Biopolymers, 42, 113–124.Google Scholar
First citation Schultz, S. C., Shields, G. C. & Steitz, T. A. (1991). Crystal structure of a CAP–DNA complex: the DNA is bent by 90 degrees. Science, 253, 1001–1007.Google Scholar
First citation Schumacher, M. A., Choi, K. Y., Zalkin, H. & Brennan, R. G. (1994). Crystal structure of LacI member, PurR, bound to DNA: minor groove binding by alpha helices. Science, 266, 763–770.Google Scholar
First citation Schwartz, T., Rould, M. A., Lowenjaupt, K., Herbert, A. & Rich, A. (1999). Crystal structure of the Zα domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science, 284, 1841–1845.Google Scholar
First citation Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl Acad. Sci. USA, 73, 804–808.Google Scholar
First citation Sklenár, V. & Feigon, J. (1990). Formation of a stable triplex from a single DNA strand. Nature (London), 345, 836–838.Google Scholar
First citation Sprous, D., Young, M. A. & Beveridge, D. L. (1999). Molecular dynamics studies of axis bending in d(G5-(GA4T4C)2-C5) and d(G5-(GT4A4C)2-C5): effects of sequence polarity on DNA curvature. J. Mol. Biol. 285, 1623–1632.Google Scholar
First citation Sprous, D., Zacharias, W., Wood, Z. A. & Harvey, S. C. (1995). Dehydrating agents sharply reduce curvature in DNAs containing A-tracts. Nucleic Acids Res. 23, 1816–1821.Google Scholar
First citation Sundaralingam, M. (1975). Principles governing nucleic acid and polynucleotide conformations. In Structure and conformation of nucleic acids and protein–nucleic acid interactions, edited by M. Sundaralingam & S. T. Rao, pp. 487–524. Baltimore: University Park Press. Google Scholar
First citation Thomas, K. A., Smith, G. M., Thomas, T. B. & Feldmann, R. J. (1982). Electronic distributions within protein phenylalanine aromatic rings are reflected by the three-dimensional oxygen atom environments. Proc. Natl Acad. Sci. USA, 79, 4843–4847.Google Scholar
First citation Voet, D. & Voet, J. G. (1990). Biochemistry. New York: John Wiley & Sons. Google Scholar
First citation Voet, D. & Voet, J. G. (1995). Biochemistry, 2nd edition. New York: John Wiley & Sons.Google Scholar
First citation Wahl, M. C. & Sundaralingam, M. (1996). Crystal structures of A-DNA duplexes. Biopolymers Nucleic Acid Sci. 44, 45–63.Google Scholar
First citation Wahl, M. C. & Sundaralingam, M. (1998). A-DNA duplexes in the crystal. In Oxford handbook of nucleic acid structure, edited by S. Neidle, ch. 5, pp. 117–144. Oxford University Press.Google Scholar
First citation Watson, J. D. & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature (London), 171, 737–738.Google Scholar
First citation Winkler, F. K., Banner, D. W., Oefner, C., Tsernoglou, D., Brown, R. S., Heathman, S. P., Bryan, R. K., Martin, P. D., Petratos, K. & Wilson, K. S. (1993). The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 12, 1781–1795.Google Scholar
First citation Wu, H.-M. & Crothers, D. M. (1984). The locus of sequence-directed and protein-induced DNA bending. Nature (London), 308, 509–513.Google Scholar
First citation Yang, W. & Steitz, T. A. (1995). Crystal structure of the site-specific recombinase gamma delta resolvase complexed with a 34 bp cleavage site. Cell, 82, 193–207.Google Scholar