International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 25.1, pp. 685-694
https://doi.org/10.1107/97809553602060000723

Chapter 25.1. Survey of programs for crystal structure determination and analysis of macromolecules

J. Dinga* and E. Arnoldb

aBiomolecular Crystallography Laboratory, CABM & Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA, and Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Yue-Yang Road, Shanghai 200 031, People's Republic of China, and bBiomolecular Crystallography Laboratory, CABM & Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854-5638, USA
Correspondence e-mail:  ding@cabm.rutgers.edu

References

Abrahams, J. P. & Leslie, A. G. W. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Cryst. D52, 30–42. Google Scholar
Alexandrov, N. N. (1996). SARFing the PDB. Protein Eng. 9, 727–732.Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). SIR97: a new tool for crystal structure determination and refinement. J. Appl. Cryst. 32, 115–119.Google Scholar
Bacon, D. J. & Anderson, W. F. (1988). A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graphics, 6, 219–220.Google Scholar
Blessing, R. H. (1997). LOCSCL: a program to statistically optimize local scaling of single-isomorphous-replacement and single-wavelength-anomalous-scattering data. J. Appl. Cryst. 30, 176–177.Google Scholar
Brady, G. P. Jr & Stouten, P. F. W. (2000). Fast prediction and visualization of protein binding pockets with PASS. J. Comput.-Aided Mol. Des. 14, 383–401.Google Scholar
Bricogne, G. (1997a). Ab initio macromolecular phasing: a blueprint for an expert system based on structure factor statistics with built-in stereochemistry. Methods Enzymol. 277, 14–19.Google Scholar
Bricogne, G. (1997b). Efficient sampling methods for combinations of signs, phases, hyperphases, and molecular orientations. Methods Enzymol. 276, 424–448.Google Scholar
Brocklehurst, S. M. & Perham, R. N. (1993). Prediction of the three-dimensional structures of the biotinylated domain from yeast pyruvate carboxylase and of the lipoylated H-protein from the pea leaf glycine cleavage system: a new automated method for the prediction of protein tertiary structure. Protein Sci. 2, 626–639.Google Scholar
Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S. & Karplus, M. (1983). CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217.Google Scholar
Brünger, A. T. (1992). X-PLOR version 3.1: a system for X-ray crystallography and NMR. New Haven: Yale University Press.Google Scholar
Brünger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Crystallography & NMR System: a new software suite for macromolecular structure determination. Acta Cryst. D54, 905–921.Google Scholar
Brünger, A. T., Kuriyan, J. & Karplus, M. (1987). Crystallographic R factor refinement by molecular dynamics. Science, 235, 458–460.Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII: Oak Ridge thermal ellipsoid plot program for crystal structure illustrations. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.Google Scholar
Carson, M. (1997). Ribbons. Methods Enzymol. 277, 493–505.Google Scholar
Carson, M. & Bugg, C. E. (1986). Algorithm for ribbon models of proteins. J. Mol. Graphics, 4, 121–122.Google Scholar
Chapman, M. S. (1995). Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function. Acta Cryst. A51, 69–80.Google Scholar
Collaborative Computational Project, Number 4 (1994). The CCP4 suite: programs for protein crystallography. Acta Cryst. D50, 760–763.Google Scholar
Connolly, M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science, 221, 709–713.Google Scholar
Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M. Jr, Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Kollman, P. A. (1995). A second generation force field for the simulation of proteins and nucleic acids. J. Am. Chem. Soc. 117, 5179–5197.Google Scholar
Cowtan, K. (1994). DM: an automated procedure for phase improvement by density modification. CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38.Google Scholar
Evans, P. R. (1993). Data reduction. In Proceedings of the CCP4 study weekend. Data collection and processing, edited by L. Sawyer, N. W. Isaacs & S. Bailey, pp. 114–122. Warrington: Daresbury Laboratory.Google Scholar
Evans, P. R. (1997). Scaling of MAD data. In Proceedings of the CCP4 study weekend. Recent advances in phasing, edited by M. Winn, Vol. 33, pp. 22–24.Google Scholar
Evans, S. V. (1993). SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graphics, 11, 134–138.Google Scholar
Ferrin, T. E., Huang, C. C., Jarvis, L. E. & Langridge, R. (1988). The MIDAS display system. J. Mol. Graphics, 6, 13–27, 36–37.Google Scholar
Furey, W. & Swaminathan, S. (1997). PHASES-95: a program package for the processing and analysis of diffraction data from macromolecules. Methods Enzymol. 277, 590–620.Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Xtal3.6 system. Perth: University of Western Australia Press.Google Scholar
Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254, 51.Google Scholar
Hendrickson, W. A. & Konnert, J. H. (1979). Stereochemically restrained crystallographic least-squares refinement of macromolecule structures. In Biomolecular structure, conformation, function and evolution, edited by R. Srinivasan, Vol. I, pp. 43–57. New York: Pergamon Press.Google Scholar
Jones, T. A. (1978). A graphics model building and refinement system for macromolecules. J. Appl. Cryst. 11, 268–272.Google Scholar
Jones, T. A. (1992). A, yaap, asap, @#*? A set of averaging programs. In Molecular replacement, edited by E. J. Dodson, S. Gover & W. Wolf, pp. 91–105. Warrington: Daresbury Laboratory.Google Scholar
Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.Google Scholar
Kabsch, W. (1988). Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Cryst. 21, 916–924.Google Scholar
Kabsch, W. & Sander, C. (1983). Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22, 2577–2637.Google Scholar
Kleywegt, G. J. & Jones, T. A. (1994). Halloween … masks and bones. In From first map to final model, edited by S. Bailey, R. Hubbard & D. Waller, pp. 59–66. Warrington: Daresbury Laboratory.Google Scholar
Kraulis, P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950.Google Scholar
La Fortelle, E. de & Bricogne, G. (1997). Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 472–494.Google Scholar
Lamzin, V. S. & Wilson, K. S. (1993). Automated refinement of protein models. Acta Cryst. D49, 129–147.Google Scholar
Lamzin, V. S. & Wilson, K. S. (1997). Automated refinement for protein crystallography. Methods Enzymol. 277, 269–305.Google Scholar
Laskowski, R. A. (1995). SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol. Graphics, 13, 323–330.Google Scholar
Lee, B. & Richards, F. M. (1971). The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 55, 379–400.Google Scholar
Lu, G. (1999). FINDNCS: a program to detect non-crystallographic symmetries in protein crystals from heavy-atom sites. J. Appl. Cryst. 32, 365–368.Google Scholar
Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. (1997). NUCPLOT: a program to generate schematic diagrams of protein–nucleic acid interactions. Nucleic Acids Res. 25, 4940–4945.Google Scholar
McDonald, I. K. & Thornton, J. M. (1994). Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238, 777–793.Google Scholar
MacKerell, A. D. Jr, Brooks, B., Brooks, C. L., Nilsson, L., Roux, B., Won, Y. & Karplus, M. (1998). CHARMM: the energy function and its parameterization with an overview of the program. In The encyclopedia of computational chemistry, edited by P. V. R. Schleyer, Vol. 1, pp. 271–277. Chichester: John Wiley & Sons.Google Scholar
McRee, D. E. (1993). Practical protein crystallography. San Diego: Academic Press.Google Scholar
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1980). MULTAN80. A system of computer programs for the automatic solution of crystal structures from X-ray diffraction data. Universities of York, England, and Louvain, Belgium.Google Scholar
Merritt, E. A. & Bacon, D. J. (1997). Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524.Google Scholar
Merritt, E. A. & Murphy, M. E. P. (1994). Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Cryst. D50, 869–873.Google Scholar
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Cryst. D53, 240–255.Google Scholar
Murshudov, G. N., Vagin, A. A., Lebedev, A., Wilson, K. S. & Dodson, E. J. (1999). Efficient anisotropic refinement of macromolecular structures using FFT. Acta Cryst. D55, 247–255.Google Scholar
Navaza, J. (1994). AMoRe: an automated package for molecular replacement. Acta Cryst. A50, 157–163.Google Scholar
Nicholls, A., Sharp, K. & Honig, B. (1991). Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins, 11, 281–296.Google Scholar
Oldfield, T. J. (1992). SQUID: a program for the analysis and display of data from crystallography and molecular dynamics. J. Mol. Graphics, 10, 247–252.Google Scholar
Otwinowski, Z. & Minor, W. (1996). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326.Google Scholar
Ravelli, R. B. G., Sweet, R. M., Skinner, J. M., Duisenberg, A. J. M. & Kroon, J. (1997). STRATEGY: a program to optimize the starting spindle angle and scan range for X-ray data collection. J. Appl. Cryst. 30, 551–554.Google Scholar
Rodriguez, R., Chinea, G., Lopez, N., Pons, T. & Vriend, G. (1998). Homology modeling, model and software evaluation: three related resources. Bioinformatics (CABIOS), 14, 523–528.Google Scholar
Rossmann, M. G. & van Beek, C. G. (1999). Data processing. Acta Cryst. D55, 1631–1640.Google Scholar
Sali, A. & Blundell, T. L. (1993). Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.Google Scholar
Sanner, M. F., Olson, A. J. & Spehner, J.-C. (1995). Fast and robust computation of molecular surfaces. Proc. 11th ACM Symp. Comp. Geom. C6–C7.Google Scholar
Sheldrick, G. M. & Schneider, T. R. (1997). SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343.Google Scholar
Steigemann, W. (1991). Recent advances in the PROTEIN program system for the X-ray structure analysis of biological macromolecules. In Crystallographic computing 5: from chemistry to biology, edited by D. Moras, A. D. Podjarny and J. C. Thierry, pp. 115–125. New York: Oxford University Press.Google Scholar
Terwilliger, T. C. & Berendzen, J. (1999). Automated MIR and MAD structure solution. Acta Cryst. D55, 849–861.Google Scholar
Tong, L. & Rossmann, M. G. (1990). The locked rotation function. Acta Cryst. A46, 783–792.Google Scholar
Tronrud, D. E. (1997). The TNT refinement package. Methods Enzymol. 277, 306–319.Google Scholar
Tronrud, D. E., Ten Eyck, L. F. & Matthews, B. W. (1987). An efficient general-purpose least-squares refinement program for macromolecular structures. Acta Cryst. A43, 489–501.Google Scholar
Turk, D. (1995). MAIN: a computer program for macromolecular crystallographers, now with utilities you always wanted. In Am. Crystallogr. Assoc. Annu. Meet. Vol. 27 (ISSN 0596-4221), p. 54, Abstract 2m.6.B.Google Scholar
Vagin, A. A., Murshudov, G. N. & Strokopytov, B. V. (1998). BLANC: the program suite for protein crystallography. J. Appl. Cryst. 31, 98–102.Google Scholar
Vriend, G. (1990). WHAT IF: a molecular modeling and drug design program. J. Mol. Graphics, 8, 52–56.Google Scholar
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng. 8, 127–134.Google Scholar
Weeks, C. M. & Miller, R. (1999). The design and implementation of SnB version 2.0. J. Appl. Cryst. 32, 120–124.Google Scholar
Zhang, K. Y. J. & Main, P. (1990a). Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Cryst. A46, 41–46.Google Scholar
Zhang, K. Y. J. & Main, P. (1990b). The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures. Acta Cryst. A46, 377–381.Google Scholar