International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 4.1, pp. 81-93   | 1 | 2 |
https://doi.org/10.1107/97809553602060000660

Chapter 4.1. General methods

R. Giegéa* and A. McPhersonb

aUnité Propre de Recherche du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg CEDEX, France, and bDepartment of Molecular Biology & Biochemistry, University of California at Irvine, Irvine, CA 92717, USA
Correspondence e-mail:  R.Giege@ibmc.u-strasbg.fr

References

Astier, J. P., Veesler, S. & Boistelle, R. (1998). Protein crystals orientation in a magnetic field. Acta Cryst. D54, 703–706.Google Scholar
Ataka, M., Katoh, E. & Wakayama, N. L. (1997). Magnetic orientation as a tool to study the initial stage of crystallization of lysozyme. J. Cryst. Growth, 173, 592–596.Google Scholar
Baldwin, E. T., Crumly, K. V. & Carter, C. W. (1986). Practical, rapid screening of protein crystallization conditions by dynamic light scattering. Biophys. J. 49, 47–48.Google Scholar
Bancel, P. A., Cajipe, V. B., Rodier, F. & Witz, J. (1998). Laser seeding for biomolecular crystallization. J. Cryst. Growth, 191, 537–544.Google Scholar
Berne, P. F., Doublié, S. & Carter, C. W. Jr (1999). Molecular biology for structural biology. In Crystallization of nucleic acids and proteins, edited by A. Ducruix & R. Giegé, 2nd ed. Oxford University Press.Google Scholar
Boggon, T. J., Chayen, N. E., Snell, E. H., Dong, J., Lautenschlager, P., Potthast, L., Siddons, D. P., Stojanoff, V., Gordon, E., Thompson, A. W., Zagalsky, P. F., Bi, R.-C. & Helliwell, J. R. (1998). Protein crystal movements and fluid flows during microgravity growth. Philos. Trans. R. Soc. London Ser. A, 356, 1045–1061.Google Scholar
Bonneté, F., Malfois, M., Finet, S., Tardieu, A., Lafont, S. & Veesler, S. (1997). Different tools to study interaction potentials in γ-crystallin solutions: relevance to crystal growth. Acta Cryst. D53, 438–447.Google Scholar
Bosch, R., Lautenschlager, P., Potthast, L. & Stapelmann, J. (1992). Experiment equipment for protein crystallization in µg facilities. J. Cryst. Growth, 122, 310–316.Google Scholar
Bott, R. R., Navia, M. A. & Smith, J. L. (1982). Improving the quality of protein crystals through purification by isoelectric focusing. J. Biol. Chem. 257, 9883–9886.Google Scholar
Carter, D. C., Lim, K., Ho, J. X., Wright, B. S., Twigg, P. D., Miller, T. Y., Chapman, J., Keeling, K., Ruble, J., Vekilov, P. G., Thomas, B. R., Rosenberger, F. & Chernov, A. A. (1999). Lower dimer impurity incorporation may result in higher perfection of HEWL crystal grown in µg – a case study. J. Cryst. Growth, 196, 623–637.Google Scholar
Chayen, N. E. (1996). A novel technique for containerless protein crystallization. Protein Eng. 9, 927–929.Google Scholar
Chayen, N. E. (1997). A novel technique to control the rate of vapour diffusion, giving larger protein crystals. J. Appl. Cryst. 30, 198–202.Google Scholar
Chayen, N. E., Boggon, T. J., Cassetta, A., Deacon, A., Gleichmann, T., Habash, J., Harrop, S. J., Helliwell, J. R., Nieh, Y. P., Peterson, M. R., Raftery, J., Snell, E. H., Hädener, A., Niemann, A. C., Siddons, D. P., Stojanoff, V., Thompson, A. W., Ursby, T. & Wulff, M. (1996). Trends and challenges in experimental macromolecular crystallography. Q. Rev. Biophys. 29, 227–278.Google Scholar
Chayen, N. E., Lloyd, L. F., Collyer, C. A. & Blow, D. M. (1989). Trigonal crystals of glucose isomerase require thymol for their growth and stability. J. Cryst. Growth, 97, 367–374.Google Scholar
Chayen, N. E., Shaw Stewart, P. D., Maeder, D. L. & Blow, D. M. (1990). An automated system for micro-batch protein crystallisation and screening. J. Appl. Cryst. 23, 297–302.Google Scholar
Chernov, A. A. (1997a). Crystals built of biological macromolecules. Phys. Rep. 288, 61–75.Google Scholar
Chernov, A. A. (1997b). Protein versus conventional crystals: creation of defects. J. Cryst. Growth, 174, 354–361.Google Scholar
Chernov, A. A. (1999). Estimates of internal stress and related mosaicity in solution grown crystals: proteins. J. Cryst. Growth, 196, 524–534.Google Scholar
Christopher, G. K., Phipps, A. G. & Gray, R. J. (1998). Temperature-dependent solubility of selected proteins. J. Cryst. Growth, 191, 820–826.Google Scholar
Cole, T., Kathman, A., Koszelak, S. & McPherson, A. (1995). Determination of the local refractive index for protein and virus crystals in solution by Mach–Zehnder interferometry. Anal. Biochem. 231, 92–98.Google Scholar
Crossio, M.-P. & Jullien, M. (1992). Fluorescence study of precrystallization of ribonuclease A: effect of salts. J. Cryst. Growth, 122, 66–70.Google Scholar
Cudney, B., Patel, S. & McPherson, A. (1994). Crystallization of macromolecules in silica gels. Acta Cryst. D50, 479–483.Google Scholar
D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). A novel approach to crystallizing proteins under oil. J. Cryst. Growth, 168, 175–180.Google Scholar
Declercq, J.-P., Evrard, C., Carter, D. C., Wright, B. S., Etienne, G. & Parello, J. (1999). A crystal of a typical EF-hand protein grown under microgravity diffracts X-rays beyond 0.9 Å resolution. J. Cryst. Growth, 196, 595–601.Google Scholar
DeLucas, L. J., Long, M. M., Moore, K. M., Rosenblum, W. M., Bray, T. L., Smith, C., Carson, M., Narayana, S. V. L., Harrington, M. D., Carter, D., Clark, A. D. Jr, Nanni, R. G., Ding, J., Jacobo-Molina, A., Kamer, G., Hughes, S. H., Arnold, E., Einspahr, H. M., Clancy, L. L., Rao, G. S. J., Cook, P. F., Harris, B. G., Munson, S. H., Finzel, B. C., McPherson, A., Weber, P. C., Lewandowski, F. A., Nagabhushan, T. L., Trotta, P. P., Reichert, P., Navia, M. A., Wilson, K. P., Thomson, J. A., Richards, R. N., Bowersox, K. D., Meade, C. J., Baker, E. S., Bishop, S. P., Dunbar, B. J., Trinh, E., Prahl, J., Sacco, A. Jr & Bugg, C. E. (1994). Recent results and new developments for protein crystal growth in microgravity. J. Cryst. Growth, 135, 183–195.Google Scholar
DeMattei, R. C. & Feigelson, R. S. (1992). Controlling nucleation in protein solutions. J. Cryst. Growth, 122, 21–30.Google Scholar
DeMattei, R. C. & Feigelson, R. S. (1993). Thermal methods for crystallizing biological macromolecules. J. Cryst. Growth, 128, 1225–1231.Google Scholar
Dobrianov, I., Finkelstein, K. D., Lemay, S. G. & Thorne, R. E. (1998). X-ray topographic studies of protein crystal perfection and growth. Acta Cryst. D54, 922–937.Google Scholar
Dock, A.-C., Lorber, B., Moras, D., Pixa, G., Thierry, J.-C. & Giegé, R. (1984). Crystallization of transfer ribonucleic acids. Biochimie, 66, 179–201.Google Scholar
Dock-Bregeon, A.-C., Chevrier, B., Podjarny, A., Moras, D., deBear, J. S., Gough, G. R., Gilham, P. T. & Johnson, J. E. (1988). High resolution structure of the RNA duplex [U(U–A)6A]2. Nature (London), 209, 375–378.Google Scholar
Dock-Bregeon, A.-C., Moras, D. & Giegé, R. (1999). Nucleic acids and their complexes. In Crystallization of nucleic acids and proteins, 2nd ed. A. Ducruix & R. Giegé, edited by Oxford University Press.Google Scholar
Ducruix, A. & Giegé, R. (1999). Editors. Crystallization of proteins and nucleic acids: a practical approach, 2nd ed. Oxford: IRL Press.Google Scholar
Ducruix, A., Guilloteau, J.-P., Riès-Kautt, M. & Tardieu, A. (1996). Protein interactions as seen by solution X-ray scattering prior to crystallogenesis. J. Cryst. Growth, 168, 28–39.Google Scholar
Durbin, S. D. & Carlson, W. E. (1992). Lysozyme crystal growth studied by atomic force microscopy. J. Cryst. Growth, 122, 71–79.Google Scholar
Durbin, S. D. & Feher, G. (1990). Studies of crystal growth mechanisms by electron microscopy. J. Mol. Biol. 212, 763–774.Google Scholar
Durbin, S. D. & Feher, G. (1996). Protein crystallization. Annu. Rev. Phys. Chem. 47, 171–204.Google Scholar
Ebel, C., Faou, P. & Zaccaï, G. (1999). Protein–solvent and weak protein–protein interactions in halophilic malate dehydrogenase. J. Cryst. Growth, 196, 395–402.Google Scholar
Ferré-D'Amaré, A. & Burley, S. K. (1997). Dynamic light scattering in evaluating crystallizability of macromolecules. Methods Enzymol. 276, 157–166.Google Scholar
Finet, S., Bonneté, F., Frouin, J., Provost, K. & Tardieu, A. (1998). Lysozyme crystal growth, as observed by small angle X-ray scattering, proceeds without crystallization intermediates. Eur. Biophys. J. 76, 554–561.Google Scholar
Fitzgerald, P. M. D. & Madson, N. B. J. (1986). Improvement of limit of diffraction and useful X-ray lifetime of crystals of glycogen debranching enzyme. J. Cryst. Growth, 76, 600–606.Google Scholar
Fourme, R., Ducruix, A., Ries-Kautt, M. & Capelle, B. (1995). The perfection of protein crystals probed by direct recording of Bragg reflection profiles with a quasi-planar X-ray wave. J. Synchrotron Rad. 2, 136–142.Google Scholar
García-Ruiz, J. M. & Moreno, A. (1994). Investigations on protein crystal growth by the gel acupuncture method. Acta Cryst. D50, 484–490.Google Scholar
García-Ruiz, J. M., Moreno, A., Otalora, F., Rondon, D., Viedma, C. & Zauscher, F. (1998). Teaching protein crystallization by the gel acupuncture method. J. Chem. Educ. 75, 442–446.Google Scholar
García-Ruiz, J. M., Novella, M. L. & Otalora, F. (1999). Supersaturation patterns in counter-diffusion crystallization methods followed by Mach–Zehnder interferometry. J. Cryst. Growth, 196, 703–710.Google Scholar
García-Ruiz, J. M. & Otalora, F. (1997). Crystal growth studies in microgravity with the APCF. II. Image analysis studies. J. Cryst. Growth, 182, 155–167.Google Scholar
Georgalis, Y., Zouni, A., Eberstein, W. & Saenger, W. (1993). Formation dynamics of protein precrystallization fractal clusters. J. Cryst. Growth, 126, 245–260.Google Scholar
George, A., Chiang, Y., Guo, B., Abrabshahi, A., Cai, Z. & Wilson, W. W. (1997). Second virial coefficient as predictor in protein crystal growth. Methods Enzymol. 276, 100–110.Google Scholar
Giegé, R., Dock, A.-C., Kern, D., Lorber, B., Thierry, J.-C. & Moras, D. (1986). The role of purification in the crystallization of proteins and nucleic acids. J. Cryst. Growth, 76, 554–561.Google Scholar
Giegé, R., Drenth, J., Ducruix, A., McPherson, A. & Saenger, W. (1995). Crystallogenesis of biological macromolecules. Biological, microgravity, and other physico-chemical aspects. Prog. Cryst. Growth Charact. 30, 237–281.Google Scholar
Giegé, R., Moras, D. & Thierry, J.-C. (1977). Yeast transfer RNAAsp: a new high resolution X-ray diffracting crystal form of a transfer RNA. J. Mol. Biol. 115, 91–96.Google Scholar
Gilliland, G., Tung, M., Blakeslee, D. M. & Ladner, J. E. (1994). Biological macromolecule crystallization database, version 3.0: new features, data and the NASA archive for protein crystal growth data. Acta Cryst. D50, 408–413.Google Scholar
Green, A. A. & Hughes, W. L. (1995). Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol. 1, 67–90.Google Scholar
Gripon, C., Legrand, L., Rosenman, I., Vidal, O., Robert, M.-C. & Boué, F. (1997). Lysozyme–lysozyme interactions in under- and super-saturated solutions: a simple relation between the second virial coefficient in H2O and D2O. J. Cryst. Growth, 178, 575–584.Google Scholar
Haas, C. & Drenth, J. (1998). The protein–water phase diagram and the growth of protein crystals from aqueous solution. J. Phys. Chem. 102, 4226–4232.Google Scholar
Hampel, A., Labananskas, M., Conners, P. G., Kirkegard, L., Raj Bhandary, U. L., Sigler, P. B. & Bock, R. M. (1968). Single crystals of transfer RNA from formyl-methionine and phenylalanine transfer RNA's. Science, 162, 1384–1386.Google Scholar
Harlos, K. (1992). Micro-bridges for sitting-drop crystallizations. J. Appl. Cryst. 25, 536–538.Google Scholar
Henisch, H. K. (1988). Crystals in gels and Liesegang rings. Cambridge, MA: Cambridge University Press.Google Scholar
Hilgenfeld, R., Liesum, A., Storm, R. & Plaas-Link, A. (1992). Crystallization of two bacterial enzymes on an unmanned space mission. J. Cryst. Growth, 122, 330–336.Google Scholar
Hirschler, J., Charon, M.-H. & Fontecilla-Camps, J. C. (1995). The effects of filtration on protein nucleation in different growth media. Protein Sci. 4, 2573–2577.Google Scholar
Izumi, K., Sawamura, S. & Ataka, M. (1996). X-ray topography of lysozyme crystals. J. Cryst. Growth, 168, 106–111.Google Scholar
Jakoby, W. B. (1971). Crystallization as a purification technique. Methods Enzymol. 22, 248–252.Google Scholar
Jerusalmi, D. & Steitz, T. A. (1997). Use of organic cosmotropic solutes to crystallize flexible proteins: application to T7 RNA polymerase and its complex with the inhibitor T7 lysozyme. J. Mol. Biol. 274, 748–756.Google Scholar
Judge, R. A., Forsythe, E. L. & Pusey, M. L. (1998). The effect of protein impurities on lysozyme crystal growth. Biotech. Bioeng. 59, 776–785.Google Scholar
Jurnak, F. (1986). Effect of chemical impurities in polyethylene glycol on macromolecular crystallization. J. Cryst. Growth, 76, 577–582.Google Scholar
Kam, Z., Shore, H. B. & Feher, G. (1978). On the crystallization of proteins. J. Mol. Biol. 123, 539–555.Google Scholar
Karpukhina, S. Ya., Barynin, V. V. & Lobanova, G. M. (1975). Crystallization of catalase in the ultracentrifuge. Sov. Phys. Crystallogr. 20, 417–418.Google Scholar
Kimble, W. L., Paxton, T. E., Rousseau, R. W. & Sambanis, A. (1998). The effect of mineral substrates on the crystallization of lysozyme. J. Cryst. Growth, 187, 268–276.Google Scholar
Komatsu, H., Miyashita, S. & Suzuki, Y. (1993). Interferometric observation of the interfacial concentration gradient layers around a lysozyme crystal. Jpn. J. Appl. Phys. 32(2), 1855–1857.Google Scholar
Konnert, J. H., D'Antonio, P. & Ward, K. B. (1994). Observation of growth steps, spiral dislocations and molecular packing on the surface of lysozyme crystals with the atomic force microscope. Acta Cryst. D50, 603–613.Google Scholar
Koszelak, S., Day, J., Leja, C., Cudney, R. & McPherson, A. (1995). Protein and virus crystal growth on International Microgravity Laboratory-2. Biophys. J. 69, 13–19.Google Scholar
Koszelak, S. & McPherson, A. (1988). Time lapse microphotography of protein crystal growth using a color VRC. J. Cryst. Growth, 90, 340–343.Google Scholar
Koszelak, S., Martin, D., Ng, J. & McPherson, A. (1991). Protein crystal growth rates determined by time lapse microphotography. J. Cryst. Growth, 110, 177–181.Google Scholar
Kurihara, K., Miyashita, S., Sazaki, G., Nakada, T., Suzuki, Y. & Komatsu, H. (1996). Interferometric study on the crystal growth of tetragonal lysozyme crystal. J. Cryst. Growth, 166, 904–908.Google Scholar
Kuznetsov, Y. G., Malkin, A. J., Greenwood, A. & McPherson, A. (1995). Interferometric studies of growth kinetics and surface morphology in macromolecular crystal growth: canavalin, thaumatin, and turnip yellow mosaic virus. J. Struct. Biol. 114, 184–196.Google Scholar
Lenhoff, A. M., Pjura, P. E., Dilmore, J. G. & Godlewski, T. S. Jr (1997). Ultracentrifugal crystallization of proteins: transport-kinetic modelling, and experimental behavior of catalase. J. Cryst. Growth, 180, 113–126.Google Scholar
Lorber, B. & Giegé, R. (1992). A versatile reactor for temperature controlled crystallization of biological macromolecules. J. Cryst. Growth, 122, 168–175.Google Scholar
Lorber, B. & Giegé, R. (1996). Containerless protein crystallization in floating drops: application to crystal growth monitoring under reduced nucleation conditions. J. Cryst. Growth, 168, 204–215.Google Scholar
Lorber, B. & Giegé, R. (1999). Biochemical aspects of macromolecular solutions and crystals. In Crystallization of nucleic acids and proteins, edited by A. Ducruix & R. Giegé, 2nd ed. Oxford University Press.Google Scholar
Lorber, B., Jenner, G. & Giegé, R. (1996). Effect of high hydrostatic pressure on nucleation and growth of protein crystals. J. Cryst. Growth, 158, 103–117.Google Scholar
Luft, J. R., Albright, D. T., Baird, J. K. & DeTitta, G. T. (1996). The rate of water equilibration in vapor-diffusion crystallizations: dependance on the distance from the droplet to the reservoir. Acta Cryst. D52, 1098–1106.Google Scholar
Luft, J. & Cody, V. (1989). A simple capillary vapor diffusion apparatus for surveying macromolecular crystallization conditions. J. Appl. Cryst. 22, 396.Google Scholar
Luft, J. R., Cody, V. & DeTitta, G. T. (1992). Experiences with HANGMAN: a macromolecular hanging drop vapor diffusion technique. J. Cryst. Growth, 122, 181–185.Google Scholar
Luft, J. R., Rak, D. M. & DeTitta, G. T. (1999a). Microbatch macromolecular crystallization in micropipettes. J. Cryst. Growth, 196, 450–455.Google Scholar
Luft, J. R., Rak, D. M. & DeTitta, G. T. (1999b). Microbatch macromolecular crystallization on a thermal gradient. J. Cryst. Growth, 196, 447–449.Google Scholar
McPherson, A. (1976). Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 251, 6300–6303.Google Scholar
McPherson, A. (1982). The preparation and analysis of protein crystals. New York: John Wiley and Sons.Google Scholar
McPherson, A. (1990). Current approaches to macromolecular crystallization. Eur. J. Biochem. 189, 1–23.Google Scholar
McPherson, A. (1996). Macromolecular crystal growth in microgravity. Crystallogr. Rev. 6, 157–305.Google Scholar
McPherson, A. (1998). Crystallization of biological macromolecules. Cold Spring Harbor and New York: Cold Spring Harbor Laboratory Press.Google Scholar
McPherson, A., Malkin, A. J. & Kuznetsov, Y. G. (1995). The science of macromolecular crystallization. Structure, 3, 759–768.Google Scholar
McPherson, A., Malkin, A. J., Kuznetsov, Y. G. & Koszelak, S. (1996). Incorporation of impurities into macromolecular crystals. J. Cryst. Growth, 168, 74–92.Google Scholar
McPherson, A. & Shlichta, P. (1988). Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science, 239, 385–387.Google Scholar
Malkin, A. J., Cheung, J. & McPherson, A. (1993). Crystallization of satellite tobacco mosaic virus. I. Nucleation phenomena. J. Cryst. Growth, 126, 544–554.Google Scholar
Malkin, A. J., Kuznetsov, Yu. G., Land, T. A., DeYoreo, J. J. & McPherson, A. (1995). Mechanisms of growth for protein and virus crystals. Nature Struct. Biol. 2, 956–959.Google Scholar
Malkin, A. J., Kuznetsov, Yu. G. & McPherson, A. (1996). Defect structure of macromolecular crystals. J. Struct. Biol. 117, 124–137.Google Scholar
Malkin, A. J. & McPherson, A. (1993). Light scattering investigations of protein and virus crystal growth: ferritin, apoferritin and satellite tobacco mosaic virus. J. Cryst. Growth, 128, 1232–1235.Google Scholar
Malkin, A. J. & McPherson, A. (1994). Light-scattering investigations of nucleation processes and kinetics of crystallization in macromolecular systems. Acta Cryst. D50, 385–395.Google Scholar
Matthews, B. W. (1985). Determination of protein molecular weight, hydration, and packing from crystal density. Methods Enzymol. 114, 176–187.Google Scholar
Mikol, V., Hirsch, E. & Giegé, R. (1990). Diagnostic of precipitant for biomacromolecule crystallization by quasi-elastic light scattering. J. Mol. Biol. 213, 187–195.Google Scholar
Mikol, V., Rodeau, J.-L. & Giegé, R. (1989). Changes of pH during biomacromolecule crystallization by vapor diffusion using ammonium sulfate as the precipitant. J. Appl. Cryst. 22, 155–161.Google Scholar
Mikol, V., Rodeau, J.-L. & Giegé, R. (1990). Experimental determination of water equilibrium rates in the hanging drop method of protein crystallization. Anal. Biochem. 186, 332–339.Google Scholar
Miller, T. V., He, X. M. & Carter, D. C. (1992). A comparison between protein crystals grown with vapor diffusion methods in microgravity and protein crystals using a gel liquid–liquid diffusion ground based method. J. Cryst. Growth, 122, 306–309.Google Scholar
Minezaki, Y., Nimura, N., Ataka, M. & Katsura, T. (1996). Small angle neutron scattering from lysozyme solutions in unsaturated and supersaturated states (SANS from lysozyme solutions). Biophys. Chem. 58, 355–363.Google Scholar
Nakada, T., Sazaki, G., Miyashita, S., Durbin, S. D. & Komatsu, H. (1999). Impurity effects on lysozyme crystallization as directly observed by atomic force microscopy. J. Cryst. Growth, 196, 503–510.Google Scholar
Neal, B. L., Asthagiri, D., Velev, O. D., Lenhoff, A. M. & Kaler, E. W. (1999). Why is the osmotic second virial coefficient related to protein crystallization? J. Cryst. Growth, 196, 377–387.Google Scholar
Ng, J., Kuznetsov, Y. G., Malkin, A. J., Keith, G., Giegé, R. & McPherson, A. (1997). Vizualization of RNA crystals growth by atomic force microscopy. Nucleic Acids Res. 25, 2582–2588.Google Scholar
Ng, J., Lorber, B., Witz, J., Théobald-Dietrich, A., Kern, D. & Giegé, R. (1996). The crystallization of biological macromolecules from precipitates. Evidence for Ostwald ripening. J. Cryst. Growth, 168, 50–62.Google Scholar
Ng, J. D., Lorber, B., Giegé, R., Koszelak, S., Day, J., Greenwood, A. & McPherson, A. (1997). Comparative analysis of thaumatin crystals grown on earth and in microgravity. Acta Cryst. D53, 724–733.Google Scholar
Otalora, F. & García-Ruiz, J. M. (1997). Crystal growth studies in microgravity with APCF. I. Computer simulation of transport dynamics. J. Cryst. Growth, 182, 141–154.Google Scholar
Otalora, F., García-Ruiz, J. M., Gavira, J. A. & Capelle, B. (1999). Topography and high resolution diffraction studies in tetragonal lysozyme. J. Cryst. Growth, 196, 546–558.Google Scholar
Papanikolau, Y. & Kokkinidis, M. (1997). Solubility, crystallization and chromatographic properties of macromolecules strongly depend on substances that reduce the ionic strength of the solution. Protein Eng. 10, 847–850.Google Scholar
Peters, R., Georgalis, Y. & Saenger, W. (1998). Accessing lysozyme nucleation with a novel dynamic light scattering detector. Acta Cryst. D54, 873–877.Google Scholar
Plester, V., Stapelmann, J., Potthast, L. & Bosch, R. (1999). The protein crystallization facility, a new European instrument to investigate biological macromolecular crystal growth on board the International Space Station. J. Cryst. Growth, 196, 638–648.Google Scholar
Price, S. R. & Nagai, K. (1995). Protein engineering as a tool for crystallography. Curr. Opin. Biotechnol. 6, 425–430.Google Scholar
Pronk, S. E., Hofstra, H., Groendijk, H., Kingma, J., Swarte, M. B. A., Dorner, F., Drenth, J., Hol, W. G. J. & Witholt, B. (1985). Heat-labile enterotoxin of Escherichia coli. Characterization of different crystal forms. J. Biol. Chem. 260, 13580–13584.Google Scholar
Provost, K. & Robert, M.-C. (1995). Crystal growth of lysozymes in media contaminated by parent molecules: influence of gelled media. J. Cryst. Growth, 156, 112–120.Google Scholar
Pusey, M., Witherow, W. K. & Nauman, R. (1988). Preliminary investigations into solutal flow about growing tetragonal lysozyme crystals. J. Cryst. Growth, 90, 105–111.Google Scholar
Pusey, M. L. (1993). A computer-controlled microscopy system for following protein crystal growth rates. Rev. Sci. Instrum. 64, 3121–3125.Google Scholar
Ray, W. J. Jr & Puvathingal, J. M. (1985). A simple procedure for removing contaminating aldehydes and peroxides from aqueous solutions of polyethylene glycols and of nonionic detergents that are based on the polyoxyethylene linkage. Anal. Biochem. 146, 307–312.Google Scholar
Rhim, W.-K. & Chung, S. K. (1990). Isolation of crystallizing droplets by electrostatic levitation. Methods Companion Methods Enzymol. 1, 118–127.Google Scholar
Richard, B., Bonneté, F., Dym, O. & Zaccaï, G. (1995). Archaea, a laboratory manual, pp. 149–154. Cold Spring Harbor Laboratory Press.Google Scholar
Riès-Kautt, M. & Ducruix, A. (1991). Crystallization of basic proteins by ion pairing. J. Cryst. Growth, 110, 20–25.Google Scholar
Riès-Kautt, M. & Ducruix, A. (1999). Phase diagrams. In Crystallization of nucleic acids and proteins, edited by A. Ducruix & R. Giegé, 2nd ed. Oxford University Press.Google Scholar
Robert, M. C., Bernard, Y. & Lefaucheux, F. (1994). Study of nucleation-related phenomena in lysozyme solutions. Application to gel growth. Acta Cryst. D50, 496–503.Google Scholar
Robert, M.-C. & Lefaucheux, F. (1988). Crystal growth in gels: principles and applications. J. Cryst. Growth, 90, 358–367.Google Scholar
Robert, M.-C., Vidal, O., García-Ruiz, J. M. & Otalora, F. (1999). Crystallization in gels and related methods. In Crystallization of nucleic acids and proteins, edited by A. Ducruix & R. Giegé, 2nd ed. Oxford University Press.Google Scholar
Rosenberger, F. (1996). Protein crystallization. J. Cryst. Growth, 166, 40–54.Google Scholar
Rosenberger, F., Vekilov, P. G., Muschol, M. & Thomas, B. R. (1996). Nucleation and crystallization of globular proteins – what do we know and what is missing. J. Cryst. Growth, 168, 1–27.Google Scholar
Rossi, G. L. (1992). Biological activity in the crystalline state. Curr. Opin. Struct. Biol. 2, 816–820.Google Scholar
Salemme, F. R. (1972). A free interface diffusion technique for crystallization of proteins for X-ray crystallography. Arch. Biochem. Biophys. 151, 533–540.Google Scholar
Sauter, C., Lorber, B., Kern, D., Cavarelli, J., Moras, D. & Giegé, R. (1999). Crystallogenesis studies on yeast aspartyl-tRNA synthetase: use of phase diagram to improve crystal quality. Acta Cryst. D55, 149–156.Google Scholar
Sauter, C., Ng, J. D., Lorber, B., Keith, G., Brion, P., Hosseini, M. W., Lehn, J.-M. & Giegé, R. (1999). Additives for the crystallization of proteins and nucleic acids. J. Cryst. Growth, 196, 365–376.Google Scholar
Sazaki, G., Yoshida, E., Komatsu, H., Nakada, T., Miyashita, S. & Watanabe, K. (1997). Effects of a magnetic field on the nucleation and growth of protein crystals. J. Cryst. Growth, 173, 231–234.Google Scholar
Shlichta, P. J. (1986). Feasibility of mapping solution properties during the growth of protein crystals. J. Cryst. Growth, 76, 656–662.Google Scholar
Shu, Z.-Y., Gong, H.-Y. & Bi, R.-C. (1998). In situ measurements and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins. J. Cryst. Growth, 192, 282–289.Google Scholar
Skouri, M., Lorber, B., Giegé, R., Munch, J.-P. & Candau, S. J. (1995). Effect of macromolecular impurities on lysozyme solubility and crystallizability. Dynamic light scattering, phase diagram, and crystal growth studies. J. Cryst. Growth, 152, 209–220.Google Scholar
Snell, E., Helliwell, J. R., Boggon, T. J., Lautenschlager, P. & Potthast, L. (1996). First ground trials of a Mach–Zehnder interferometer for implementation into a microgravity protein crystallization facility – the APCF. Acta Cryst. D52, 529–533.Google Scholar
Snell, E. H., Weisgerber, S., Helliwell, J. R., Weckert, E., Hölzer, K. & Schroer, K. (1995). Improvements in lysozyme protein crystal perfection through microgravity growth. Acta Cryst. D51, 1099–1102.Google Scholar
Sousa, R., Lafer, E. M. & Wang, B.-C. (1991). Preparation of crystals of T7 RNA polymerase suitable for high resolution X-ray structure analysis. J. Cryst. Growth, 110, 237–246.Google Scholar
Stojanoff, V., Siddons, D. P., Monaco, L. A., Vekilov, P. & Rosenberger, F. (1997). X-ray topography of tetragonal lysozyme grown by the temperature-controlled technique. Acta Cryst. D53, 588–595.Google Scholar
Stojanoff, V., Snell, E. F., Siddons, D. P. & Helliwell, J. R. (1996). An old technique with a new application: X-ray topography of protein crystals. Synchrotron Radiat. News, 9, 25–26.Google Scholar
Strickland, C. L., Puchalski, R., Savvides, S. N. & Karplus, P. A. (1995). Overexpression of Crithidia fasciculata trypanothione reductase and crystallization using a novel geometry. Acta Cryst. D51, 337–341.Google Scholar
Stura, E. A. & Wilson, I. A. (1990). Analytical and production seeding techniques. Methods Companion Methods Enzymol. 1, 38–49.Google Scholar
Suzuki, Y., Miyashita, S., Komatsu, H., Sato, K. & Yagi, T. (1994). Crystal growth of hen egg white lysozyme under high pressure. Jpn. J. Appl. Phys. 33, 1568–1570.Google Scholar
Sygusch, J., Coulombe, R., Cassanto, J. M., Sportiello, M. G. & Todd, P. (1996). Protein crystallization in low gravity by step gradient diffusion method. J. Cryst. Growth, 162, 167–172.Google Scholar
Taleb, M., Didierjean, C., Jelsch, C., Mangeot, J.-P., Capelle, B. & Aubry, A. (1999). Crystallization of biological macromolecules under an external electric field. J. Cryst. Growth, 200, 575–582.Google Scholar
Thaller, D., Eichele, G., Weaver, L. H., Wilson, E., Karlsson, R. & Jansonius, J. N. (1985). Seed enlargement and repeated seeding. Methods Enzymol. 114, 132–135.Google Scholar
Thibault, F., Langowski, L. & Leberman, R. (1992). Pre-nucleation crystallization studies on aminoacyl-tRNA synthetases by dynamic light scattering. J. Mol. Biol. 225, 185–191.Google Scholar
Thiessen, K. J. (1994). The use of two novel methods to grow protein crystals by microdialysis and vapor diffusion in an agarose gel. Acta Cryst. D50, 491–495.Google Scholar
Thomas, B. R., Vekilov, P. G. & Rosenberger, F. (1998). Effects of microheterogeneity in hen egg-white lysozyme crystallization. Acta Cryst. D54, 226–236.Google Scholar
Thomas, D. H., Rob, A. & Rice, D. W. (1989). A novel dialysis procedure for the crystallization of proteins. Protein Eng. 2, 489–491.Google Scholar
Timasheff, S. N. & Arakawa, T. (1988). Mechanism of protein precipitation and stabilization by co-solvents. J. Cryst. Growth, 90, 39–46.Google Scholar
Vaney, M. C., Maignan, S., Riès-Kautt, M. & Ducruix, A. (1996). High-resolution structure (1.33 Å) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Cryst. D52, 505–517.Google Scholar
Vekilov, P. G., Ataka, M. & Katsura, T. (1992). Laser Michelson interferometry investigation of protein crystal growth. J. Cryst. Growth, 130, 317–320.Google Scholar
Vekilov, P. G. & Rosenberger, F. (1996). Dependence of lysozyme growth kinetics on step sources and impurities. J. Cryst. Growth, 158, 540–551.Google Scholar
Vekilov, P. G. & Rosenberger, F. (1998). Protein crystal growth under forced solution flow: experimental setup and general response of lysozyme. J. Cryst. Growth, 186, 251–261.Google Scholar
Vidal, O., Robert, M.-C. & Boué, F. (1998a). Gel growth of lysozyme crystals studied by small angle neutron scattering: case of agarose gel, a nucleation promotor. J. Cryst. Growth, 192, 257–270.Google Scholar
Vidal, O., Robert, M.-C. & Boué, F. (1998b). Gel growth of lysozyme crystals studied by small angle neutron scattering: case of silica gel, a nucleation inhibitor. J. Cryst. Growth, 192, 271–281.Google Scholar
Vuillard, L., Rabilloud, T., Leberman, R., Berthet-Colominas, C. & Cusack, S. (1994). A new additive for protein crystallization. FEBS Lett. 353, 294–296.Google Scholar
Weber, B. H. & Goodkin, P. E. (1970). A modified microdiffusion procedure for the growth of single protein crystals by concentration-gradient equilibrium dialysis. Arch. Biochem. Biophys. 141, 489–498.Google Scholar
Yonath, A., Müssig, J. & Wittmann, H. G. (1982). Parameters for crystal growth of ribosomal subunits. J. Cell. Biochem. 19, 145–155.Google Scholar
Zeppenzauer, M. (1971). Formation of large crystals. Methods Enzymol. 22, 253–266.Google Scholar