International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 4.1, pp. 82-84   | 1 | 2 |

Section 4.1.2.4. Vapour diffusion methods

R. Giegéa* and A. McPhersonb

a Unité Propre de Recherche du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg CEDEX, France, and bDepartment of Molecular Biology & Biochemistry, University of California at Irvine, Irvine, CA 92717, USA
Correspondence e-mail:  R.Giege@ibmc.u-strasbg.fr

4.1.2.4. Vapour diffusion methods

| top | pdf |

Crystallization by vapour diffusion was introduced to structural biology for the preparation of tRNA crystals (Hampel et al., 1968[link]). It is well suited for small volumes (as little as 2 µl or less) and has became the favoured method of most experimenters. It is practiced in a variety of forms and is the method of choice for robotics applications. In all of its versions, a drop containing the macromolecule to be crystallized together with buffer, precipitant and additives is equilibrated against a reservoir containing a solution of precipitant at a higher concentration than that in the drop (Fig. 4.1.2.1c[link]). Equilibration proceeds by diffusion of the volatile species until the vapour pressure of the drop equals that of the reservoir. If equilibration occurs by water (or organic solvent) exchange from the drop to the reservoir (e.g. if the initial salt concentration in the reservoir is higher than in the drop), it leads to a volume decrease of the drop, so that the concentration of all constituents in the drop increase. The situation is the inverse if the initial concentration of the crystallizing agent in the reservoir is lower than that in the drop. In this case, water exchange occurs from the reservoir to the drop. Crystallization of several macromolecules has been achieved using this `reversed' procedure (Giegé et al., 1977[link]; Richard et al., 1995[link]; Jerusalmi & Steitz, 1997[link]).

Hanging drops are frequently deployed in Linbro tissue-culture plates. These plates contain 24 wells with volumes of ∼2 ml and inner diameters of 16 mm. Each well is covered by a glass cover slip of 22 mm diameter. Drops are formed by mixing 2–10 µl aliquots of the macromolecule with aliquots of the precipitant and additional components as needed. A ratio of two between the concentration of the crystallizing agent in the reservoir and in the drop is most frequently used. This is achieved by mixing a droplet of protein at twice the desired final concentration with an equal volume of the reservoir at the proper concentration (to prevent drops from falling into the reservoir, their final volume should not exceed 25 µl). When no crystals or precipitate are observed in the drops, either sufficient supersaturation has not been reached, or, possibly, only the metastable region has been attained. In the latter case, changing the temperature by a few degrees may be sufficient to initiate nucleation. In the former case, the concentration of precipitant in the reservoir must be increased. A variant of the hanging-drop procedure is the HANGMAN method. It utilizes a clear, non-wetting adhesive tape that both supports the protein drops and seals the reservoirs (Luft et al., 1992[link]).

Sitting drops can be installed in a variety of different devices. Arrangements consisting of Pyrex plates with a variable number of depressions (up to nine) installed in sealed boxes were used for tRNA crystallization (Dock et al., 1984[link]). Drops of mother liquor are dispensed into the depressions and reservoir solutions with precipitant are poured into the bottom sections of the boxes. These systems are efficient for large drop arrays and can be used for both screening and optimizing crystallization conditions. Multichamber arrangements are suitable for the control of individual assays (Fig. 4.1.2.2[link]). They often consist of polystyrene plates with 24 wells which can be individually sealed. Sitting drops can also be placed on microbridges (Harlos, 1992[link]) or supported by plastic posts in the centres of the wells. Reservoir solutions are contained in the wells in which the microbridges or support posts are placed. Plates with 96 wells, sealed with clear sealing tape, are convenient for large-matrix screening. Most of these plates are commercially available and can often be used for a majority of different vapour diffusion crystallization methodologies (hanging, sitting or sandwich drops, the latter being maintained between two glass plates). A crystallization setup in which drops are deployed in glass tubes which are maintained vertically and epoxy-sealed on glass cover slips is known as the plug-drop design (Strickland et al., 1995[link]). Plug-drop units are placed in the wells of Linbro plates surrounded by reservoir solution and the wells are then sealed as usual. With this geometry, crystals do not adhere to glass cover slips, as they may with sandwich drops.

[Figure 4.1.2.2]

Figure 4.1.2.2 | top | pdf |

Two versions of boxes for vapour diffusion crystallization. On the left, a Linbro tissue-culture plate with 24 wells widely used for hanging-drop assays (it may also be used for sitting drops, dialysis and batch crystallization). On the right, a Cryschem multichamber plate, with a post in the centre of each well, for sitting drops.

Vapour phase equilibration can be achieved in capillaries (Luft & Cody, 1989[link]) or even directly in X-ray capillaries, as described for ribosome crystallization (Yonath et al., 1982[link]). This last method may even be essential for fragile crystals, where transferring from crystallization cells to X-ray capillaries can lead to mechanical damage. Vapour diffusion methods permit easy variations of physical parameters during crystallization, and many successes have been obtained by affecting supersaturation by temperature or pH changes. With ammonium sulfate as the precipitant, it has been shown that the ultimate pH in the drops of mother liquor is imposed by that of the reservoir (Mikol et al., 1989[link]). Thus, varying the pH of the reservoir permits adjustment of that in the drops. Sitting drops are also well suited for carrying out epitaxic growth of macromolecule crystals on mineral matrices or other surfaces (McPherson & Schlichta, 1988[link]; Kimble et al., 1998[link]).

The kinetics of water evaporation (or of any other volatile species) determine the kinetics of supersaturation and, consequently, those of nucleation. Kinetics measured from hanging drops containing ammonium sulfate, polyethylene glycol (PEG) or 2-methyl-2,4-pentanediol (MPD) are influenced significantly by experimental conditions (Mikol, Rodeau & Giegé, 1990[link]; Luft et al., 1996[link]). The parameters that chiefly determine equilibration rates are temperature, initial drop volume (and initial surface-to-volume ratio of the drop and its dilution with respect to the reservoir), water pressure, the chemical nature of the crystallizing agent and the distance separating the hanging drop from the reservoir solution. Based on the distance dependence, a simple device allows one to vary the rate of water equilibration and thereby optimize crystal-growth conditions (Luft et al., 1996[link]). Evaporation rates can also be monitored and controlled in a weight-sensitive device (Shu et al., 1998[link]). Another method uses oil layered over the reservoir and functions because oil permits only very slow evaporation of the underlying aqueous solution (Chayen, 1997[link]). The thickness of the oil layer, therefore, dictates evaporation rates and, consequently, crystallization rates. Likewise, evaporation kinetics are dependent on the type of oil (paraffin or silicone oils) that covers the reservoir solutions or crystallization drops in the microbatch arrangement (D'Arcy et al., 1996[link]; Chayen, 1997[link]).

The period for water equilibration to reach 90% completion can vary from ∼25 h to more than 25 d. Most rapid equilibration occurs with ammonium sulfate, it is slower with MPD and it is by far the slowest with PEG. An empirical model has been proposed which estimates the minimum duration of equilibration under standard experimental conditions (Mikol, Rodeau & Giegé, 1990[link]). Equilibration that brings the macromolecules very slowly to a supersaturated state may explain the crystallization successes with PEG as the crystallizing agent (Table 4.1.2.2[link]). This explanation is corroborated by experiments showing an increase in the terminal crystal size when equilibration rates are reduced (Chayen, 1997[link]).

Table 4.1.2.2 | top | pdf |
Crystallizing agents for protein crystallization

(a) Salts.

Chemical No. of macromolecules No. of crystals
Ammonium salts: sulfate 802 979
phosphate 20 21
acetate 13 13
chloride, nitrate, citrate, sulfite, formate, diammonium phosphate 1–3 1–3
Calcium salts: chloride 12 12
acetate 6 8
Lithium salts: sulfate 33 34
chloride 17 19
nitrate 2 2
Magnesium salts: chloride 32 32
sulfate 13 14
acetate 6 7
Potassium salts: phosphate 42 79
chloride 15 17
tartrate, citrate, fluoride, nitrate, thiocyanate 1–3 1–3
Sodium salts: chloride 148 186
acetate 43 46
citrate 34 36
phosphate 28 36
sulfate, formate, nitrate, tartrate 3–10 3–10
acetate buffer, azide, citrate–phosphate, dihydrogenphosphate, sulfite, borate, carbonate, succinate, thiocyanate, thiosulfate 1 or 2 1 or 2
Other salts: sodium–potassium phosphate 60 65
phosphate (counter-ion not specified) 33 39
caesium chloride 18 24
phosphate buffer 10 11
trisodium citrate, barium chloride, sodium–potassium tartrate, zinc(II) acetate, cacodylate (arsenic salt), cadmium chloride 1 or 2 1–3

(b) Organic solvents.

Chemical No. of macromolecules No. of crystals
Ethanol 63 93
Methanol, isopropanol 27 or 25 31 or 28
Acetone 13 13
Dioxane, 2-propanol, acetonitrile, DMSO, ethylene glycol, n-propanol, tertiary butanol, ethyl acetate, hexane-1,6-diol 2–11 3–11
1,3-Propanediol, 1,4-butanediol, 1-propanol, 2,2,2-trifluoroethanol, chloroform, DMF, ethylenediol, hexane-2,5-diol, hexylene-glycol, N,N-bis(2-hydroxymethyl)-2-aminomethane, N-lauryl-N,N-dimethylamine-N-oxide, n-octyl-2-hydroxyethylsulfoxide, pyridine, saturated octanetriol, sec-butanol, triethanolamine–HCl 1 1

(c) Long-chain polymers.

Chemical No. of macromolecules No. of crystals
PEG 4000 238 275
PEG 6000 189 251
PEG 8000 185 230
PEG 3350 48 54
PEG 1000, 1500, 2000, 3000, 3400, 10 000, 12 000 or 20 000; PEG monomethyl ether 750, 2000 or 5000 2–18 2–20
PEG 3500, 3600 or 4500; polygalacturonic acid; polyvinylpyrrolidone 1 1

(d) Low-molecular-mass polymers and non-volatile organic compounds.

Chemical No. of macromolecules No. of crystals
MPD 283 338
PEG 400 40 45
Glycerol 33 34
Citrate, Tris–HCl, MES, PEG 600, imidazole–malate, acetate 2–11 4–12
PEG monomethyl ether 550, Tris–maleate, PEG 200, acetate, EDTA, HEPES 2 2
Sucrose, acetic acid, BES, CAPS, citric acid, glucose, glycine–NaOH, imidazole–citrate, Jeffamine ED 4000, maleate, MES–NaOH, methyl-1,2,2-pentanediol, N,N-bis-(2-hydroxymethyl)-2-aminomethane, N-lauryl-N,N-dimethylamine-N-oxide, n-octyl-2-hydroxyethylsulfoxide, rufianic acid, spermine–HCl, triethanolamine–HCl, triethylammonium acetate, Tris–acetate, urea 1 1 or 2

Abbreviations: BES: N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid; CAPS: 3-(cyclohexylamino)-1-propanesulfonic acid; DMF: dimethylformamide; DMSO: dimethyl sulfoxide; EDTA: (ethylenedinitrilo)tetraacetic acid; HEPES: N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid); MES: 2-(N-morpholino)ethanesulfonic acid; MPD: 2-methyl-2,4-pentanediol; PEG: polyethylene glycol; Tris: tris(hydroxymethyl)aminomethane.

References

First citation Chayen, N. E. (1997). A novel technique to control the rate of vapour diffusion, giving larger protein crystals. J. Appl. Cryst. 30, 198–202.Google Scholar
First citation D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996). A novel approach to crystallizing proteins under oil. J. Cryst. Growth, 168, 175–180.Google Scholar
First citation Dock, A.-C., Lorber, B., Moras, D., Pixa, G., Thierry, J.-C. & Giegé, R. (1984). Crystallization of transfer ribonucleic acids. Biochimie, 66, 179–201.Google Scholar
First citation Giegé, R., Moras, D. & Thierry, J.-C. (1977). Yeast transfer RNAAsp: a new high resolution X-ray diffracting crystal form of a transfer RNA. J. Mol. Biol. 115, 91–96.Google Scholar
First citation Hampel, A., Labananskas, M., Conners, P. G., Kirkegard, L., Raj Bhandary, U. L., Sigler, P. B. & Bock, R. M. (1968). Single crystals of transfer RNA from formyl-methionine and phenylalanine transfer RNA's. Science, 162, 1384–1386.Google Scholar
First citation Harlos, K. (1992). Micro-bridges for sitting-drop crystallizations. J. Appl. Cryst. 25, 536–538.Google Scholar
First citation Jerusalmi, D. & Steitz, T. A. (1997). Use of organic cosmotropic solutes to crystallize flexible proteins: application to T7 RNA polymerase and its complex with the inhibitor T7 lysozyme. J. Mol. Biol. 274, 748–756.Google Scholar
First citation Kimble, W. L., Paxton, T. E., Rousseau, R. W. & Sambanis, A. (1998). The effect of mineral substrates on the crystallization of lysozyme. J. Cryst. Growth, 187, 268–276.Google Scholar
First citation Luft, J. & Cody, V. (1989). A simple capillary vapor diffusion apparatus for surveying macromolecular crystallization conditions. J. Appl. Cryst. 22, 396.Google Scholar
First citation Luft, J. R., Albright, D. T., Baird, J. K. & DeTitta, G. T. (1996). The rate of water equilibration in vapor-diffusion crystallizations: dependance on the distance from the droplet to the reservoir. Acta Cryst. D52, 1098–1106.Google Scholar
First citation Luft, J. R., Cody, V. & DeTitta, G. T. (1992). Experiences with HANGMAN: a macromolecular hanging drop vapor diffusion technique. J. Cryst. Growth, 122, 181–185.Google Scholar
First citation McPherson, A. & Shlichta, P. (1988). Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science, 239, 385–387.Google Scholar
First citation Mikol, V., Rodeau, J.-L. & Giegé, R. (1989). Changes of pH during biomacromolecule crystallization by vapor diffusion using ammonium sulfate as the precipitant. J. Appl. Cryst. 22, 155–161.Google Scholar
First citation Mikol, V., Rodeau, J.-L. & Giegé, R. (1990). Experimental determination of water equilibrium rates in the hanging drop method of protein crystallization. Anal. Biochem. 186, 332–339.Google Scholar
First citation Richard, B., Bonneté, F., Dym, O. & Zaccaï, G. (1995). Archaea, a laboratory manual, pp. 149–154. Cold Spring Harbor Laboratory Press.Google Scholar
First citation Shu, Z.-Y., Gong, H.-Y. & Bi, R.-C. (1998). In situ measurements and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins. J. Cryst. Growth, 192, 282–289.Google Scholar
First citation Strickland, C. L., Puchalski, R., Savvides, S. N. & Karplus, P. A. (1995). Overexpression of Crithidia fasciculata trypanothione reductase and crystallization using a novel geometry. Acta Cryst. D51, 337–341.Google Scholar
First citation Yonath, A., Müssig, J. & Wittmann, H. G. (1982). Parameters for crystal growth of ribosomal subunits. J. Cell. Biochem. 19, 145–155.Google Scholar








































to end of page
to top of page