International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 4.1, p. 91   | 1 | 2 |

Section 4.1.6.1. Why microgravity?

R. Giegéa* and A. McPhersonb

a Unité Propre de Recherche du CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, F-67084 Strasbourg CEDEX, France, and bDepartment of Molecular Biology & Biochemistry, University of California at Irvine, Irvine, CA 92717, USA
Correspondence e-mail:  R.Giege@ibmc.u-strasbg.fr

4.1.6.1. Why microgravity?

| top | pdf |

In microgravity, two interrelated parameters, convection and sedimentation, can be controlled. In weightlessness, the elimination of flows that occur in the medium in which the crystal grows theoretically has consequences that may account either for improvements in crystal quality, or crystal deterioration (Chernov, 1997a[link]; Carter et al., 1999[link]). The absence of sedimentation permits growth in suspension unperturbed by contact with containing-vessel walls and other crystals. However, protein-crystal movements, some consistent with Marangoni convection (Boggon et al., 1998[link]) and others of diverse origins (García-Ruiz & Otalora, 1997[link]), have been recorded during microgravity growth. On the other hand, it has been proposed that a reduced flow around the crystals minimizes hydrodynamic forces acting on and between the growing crystals and, as a consequence, may favour incorporation of misoriented molecules that act as impurities (Carter et al., 1999[link]). This divergent view of microgravity effects could account for the diversity of results observed in crystallization experiments conducted in this environment, some showing enhanced diffraction qualities of the space-grown crystals (see below), others showing no effect (e.g. Vaney et al., 1996[link]) or even decreased crystal quality (e.g. Hilgenfeld et al., 1992[link]).

Experiments dealing with the crystallization of proteins and other macromolecules in microgravity have been carried out now for 15 years (DeLucas et al., 1994[link]; Giegé et al., 1995[link]; McPherson, 1996[link]; Boggon et al., 1998[link]). The design of experiments has been based on different strategies. One consists of screening the crystallization of the largest number of proteins, with the intention of obtaining crystals of enhanced quality. In these experiments, monitoring of parameters during growth is restricted, and earth-grown direct control crystals are often not feasible. A second strategic objective is the more thorough study of a few model cases to unravel the basic processes underlying crystal growth. Here, the idea is to monitor as many parameters as possible during flight and, if possible, to conduct ground controls in the same types of crystallization devices, using identical protein samples. In both cases, assessment of the diffraction qualities of the crystals is essential, but precise measurements have only been carried out for the past few years. Altogether, a variety of observations and measurements recorded by many groups of investigators appears to demonstrate, some would say prove, that crystals of biological macromolecules grown in space are superior, in a number of important respects, to equivalent crystals grown in conventional laboratories on earth. This is of some importance, not only from the standpoint of physical phenomena and their understanding, but in a more practical sense as well.

References

First citation Boggon, T. J., Chayen, N. E., Snell, E. H., Dong, J., Lautenschlager, P., Potthast, L., Siddons, D. P., Stojanoff, V., Gordon, E., Thompson, A. W., Zagalsky, P. F., Bi, R.-C. & Helliwell, J. R. (1998). Protein crystal movements and fluid flows during microgravity growth. Philos. Trans. R. Soc. London Ser. A, 356, 1045–1061.Google Scholar
First citation Carter, D. C., Lim, K., Ho, J. X., Wright, B. S., Twigg, P. D., Miller, T. Y., Chapman, J., Keeling, K., Ruble, J., Vekilov, P. G., Thomas, B. R., Rosenberger, F. & Chernov, A. A. (1999). Lower dimer impurity incorporation may result in higher perfection of HEWL crystal grown in µg – a case study. J. Cryst. Growth, 196, 623–637.Google Scholar
First citation Chernov, A. A. (1997a). Crystals built of biological macromolecules. Phys. Rep. 288, 61–75.Google Scholar
First citation Cole, T., Kathman, A., Koszelak, S. & McPherson, A. (1995). Determination of the local refractive index for protein and virus crystals in solution by Mach–Zehnder interferometry. Anal. Biochem. 231, 92–98.Google Scholar
First citation DeLucas, L. J., Long, M. M., Moore, K. M., Rosenblum, W. M., Bray, T. L., Smith, C., Carson, M., Narayana, S. V. L., Harrington, M. D., Carter, D., Clark, A. D. Jr, Nanni, R. G., Ding, J., Jacobo-Molina, A., Kamer, G., Hughes, S. H., Arnold, E., Einspahr, H. M., Clancy, L. L., Rao, G. S. J., Cook, P. F., Harris, B. G., Munson, S. H., Finzel, B. C., McPherson, A., Weber, P. C., Lewandowski, F. A., Nagabhushan, T. L., Trotta, P. P., Reichert, P., Navia, M. A., Wilson, K. P., Thomson, J. A., Richards, R. N., Bowersox, K. D., Meade, C. J., Baker, E. S., Bishop, S. P., Dunbar, B. J., Trinh, E., Prahl, J., Sacco, A. Jr & Bugg, C. E. (1994). Recent results and new developments for protein crystal growth in microgravity. J. Cryst. Growth, 135, 183–195.Google Scholar
First citation García-Ruiz, J. M. & Otalora, F. (1997). Crystal growth studies in microgravity with the APCF. II. Image analysis studies. J. Cryst. Growth, 182, 155–167.Google Scholar
First citation Giegé, R., Drenth, J., Ducruix, A., McPherson, A. & Saenger, W. (1995). Crystallogenesis of biological macromolecules. Biological, microgravity, and other physico-chemical aspects. Prog. Cryst. Growth Charact. 30, 237–281.Google Scholar
First citation Hilgenfeld, R., Liesum, A., Storm, R. & Plaas-Link, A. (1992). Crystallization of two bacterial enzymes on an unmanned space mission. J. Cryst. Growth, 122, 330–336.Google Scholar
First citation Vaney, M. C., Maignan, S., Riès-Kautt, M. & Ducruix, A. (1996). High-resolution structure (1.33 Å) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. Acta Cryst. D52, 505–517.Google Scholar








































to end of page
to top of page