Tables for
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 4.3, pp. 100-110   | 1 | 2 |

Chapter 4.3. Application of protein engineering to improve crystal properties

D. R. Daviesa* and A. Burgess Hickmana

aLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA
Correspondence e-mail:


Bell, J. A., Wilson, K. P., Zhang, X.-J., Faber, H. R., Nicholson, H. & Matthews, B. W. (1991). Comparison of the crystal structure of bacteriophage T4 lysozyme at low, medium, and high ionic strengths. Proteins, 10, 10–21.Google Scholar
Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D. C., Joachimiak, A., Horwich, A. L. & Sigler, P. B. (1994). The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature (London), 371, 578–586.Google Scholar
Budisa, N., Steipe, B., Demange, P., Eckerskorn, C., Kellermann, J. & Huber, R. (1995). High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem. 230, 788–796.Google Scholar
Bujacz, G., Jaskolski, M., Alexandratos, J., Wlodawer, A., Merkel, G., Katz, R. A. & Skalka, A. M. (1995). High resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253, 333–346.Google Scholar
Carugo, O. & Argos, P. (1997). Protein–protein crystal-packing contacts. Protein Sci. 6, 2261–2263.Google Scholar
Cowie, D. B. & Cohen, G. N. (1957). Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta, 26, 252–261.Google Scholar
Dale, G. E., Broger, C., Langen, H., D'Arcy, A. & Stüber, D. (1994). Improving protein solubility through rationally designed amino acid replacements: solubilization of the trimethoprim-resistant type S1 dihydrofolate reductase. Protein Eng. 7, 933–939.Google Scholar
D'Arcy, A. (1994). Crystallizing proteins – a rational approach? Acta Cryst. D50, 469–471.Google Scholar
Dasgupta, S., Iyer, G. H., Bryant, S. H., Lawrence, C. E. & Bell, J. A. (1997). Extent and nature of contacts between protein molecules in crystal lattices and between subunits of protein oligomers. Proteins, 28, 494–514.Google Scholar
Dayhoff, M. O. (1978). Atlas of protein sequence and structure, Vol. 5, Suppl. 3, p. 363. Washington DC: National Biomedical Research Foundation.Google Scholar
Donahue, J. P., Patel, H., Anderson, W. F. & Hawiger, J. (1994). Three-dimensional structure of the platelet integrin recognition segment of the fibrinogen γ chain obtained by carrier protein-driven crystallization. Proc. Natl Acad. Sci. USA, 91, 12178–12182.Google Scholar
Doublié, S. (1997). Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530.Google Scholar
Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science, 266, 1981–1986.Google Scholar
Fermi, G. & Perutz, M. F. (1981). Atlas of molecular structures in biology, Vol. 2. Oxford: Clarendon Press.Google Scholar
Golden, B. L., Ramakrishnan, V. & White, S. W. (1993). Ribosomal protein L6: structural evidence of gene duplicaton from a primitive RNA binding protein. EMBO J. 12, 4901–4908.Google Scholar
Goldgur, Y., Dyda, F., Hickman, A. B., Jenkins, T. M., Craigie, R. & Davies, D. R. (1998). Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl Acad. Sci. USA, 95, 9150–9154.Google Scholar
Heinz, D. W. & Matthews, B. W. (1994). Rapid crystallization of T4 lysozyme by intermolecular disulfide cross-linking. Protein Eng. 7, 301–307.Google Scholar
Hendrickson, W. A. (1991). Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science, 254, 51–58.Google Scholar
Hendrickson, W. A., Horton, J. R. & LeMaster, D. M. (1990). Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure. EMBO J. 9, 1665–1672.Google Scholar
Hendrickson, W. A. & Ogata, C. M. (1997). Phase determination from multiwavelength anomalous diffraction measurements. Methods Enzymol. 276, 494–523.Google Scholar
Hickman, A. B., Dyda, F. & Craigie, R. (1997). Heterogeneity in recombinant HIV-1 integrase corrected by site-directed mutagenesis: the identification and elimination of a protease cleavage site. Protein Eng. 10, 601–606.Google Scholar
Hizi, A. & Hughes, S. H. (1988). Expression of the Moloney murine leukemia virus and human immunodeficiency virus integration proteins in Escherichia coli. Virology, 167, 634–638.Google Scholar
Hoffman, D. W., Davies, C., Gerchman, S. E., Kycia, J. H., Porter, S. J., White, S. W. & Ramakrishnan, V. (1994). Crystal structure of prokaryotic ribosomal protein L9: a bi-lobed RNA-binding protein. EMBO J. 13, 205–212.Google Scholar
Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998). Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science, 282, 1669–1675.Google Scholar
Jenkins, T. M., Hickman, A. B., Dyda, F., Ghirlando, R., Davies, D. R. & Craigie, R. (1995). Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc. Natl Acad. Sci. USA, 92, 6057–6061.Google Scholar
Karle, J. (1980). Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology. Int. J. Quantum Chem. Symp. 7, 357–367.Google Scholar
Kuge, M., Fujii, Y., Shimizu, T., Hirose, F., Matsukage, A. & Hakoshima, T. (1997). Use of a fusion protein to obtain crystals suitable for X-ray analysis: crystallization of a GST-fused protein containing the DNA-binding domain of DNA replication-related element-binding factor, DREF. Protein Sci. 6, 1783–1786.Google Scholar
Kwong, P. D., Wyatt, R., Robinson, J., Sweet, R. W., Sodroski, J. & Hendrickson, W. A. (1998). Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature (London), 393, 648–659.Google Scholar
Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., Smith, J. M. A., Livingstone, J. C., Treffry, A., Luzzago, A., Levi, S., Arosio, P., Cesareni, G., Thomas, C. D., Shaw, W. V. & Harrison, P. M. (1991). Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature (London), 349, 541–544.Google Scholar
Leahy, D. J., Erickson, H. P., Aukhil, I., Joshi, P. & Hendrickson, W. A. (1994). Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins, 19, 48–54.Google Scholar
McElroy, H. E., Sisson, G. W., Schoettlin, W. E., Aust, R. M. & Villafranca, J. E. (1992). Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase. J. Cryst. Growth, 122, 265–272.Google Scholar
Martinez, C., De Geus, P., Lauwereys, M., Matthyssens, G. & Cambillau, C. (1992). Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent. Nature (London), 356, 615–618.Google Scholar
Martínez-Hackert, E., Harlocker, S., Inouye, M., Berman, H. M. & Stock, A. M. (1996). Crystallization, X-ray studies, and site-directed cysteine mutagenesis of the DNA-binding domain of OmpR. Protein Sci. 5, 1429–1433.Google Scholar
Matthews, B. W. (1993). Structural and genetic analysis of protein stability. Annu. Rev. Biochem. 62, 139–160.Google Scholar
Mazzoni, M. R., Malinski, J. A. & Hamm, H. E. (1991). Structural analysis of rod GTP-binding protein, Gt. J. Biol. Chem. 266, 14072–14081.Google Scholar
Mittl, P. R. E., Berry, A., Scrutton, N. S., Perham, R. N. & Schulz, G. E. (1994). A designed mutant of the enzyme glutathione reductase shortens the crystallization time by a factor of forty. Acta Cryst. D50, 228–231.Google Scholar
Nagai, K., Oubridge, C., Jessen, T. H., Li, J. & Evans, P. R. (1990). Crystal structure of the RNA-binding domain of the U1 small nuclear ribonucleoprotein A. Nature (London), 348, 515–520.Google Scholar
Nilsson, B., Forsberg, G., Moks, T., Hartmanis, M. & Uhlén, M. (1992). Fusion proteins in biotechnology and structural biology. Curr. Opin. Struct. Biol. 2, 569–575.Google Scholar
Noel, J. P., Hamm, H. E. & Sigler, P. B. (1993). The 2.2 Å crystal structure of transducin-α complexed with GTPγS. Nature (London), 366, 654–663.Google Scholar
Oubridge, C., Ito, N., Teo, C.-H., Fearnley, I. & Nagai, K. (1995). Crystallisation of RNA-protein complexes II. The application of protein engineering for crystallisation of the U1A protein–RNA complex. J. Mol. Biol. 249, 409–423.Google Scholar
Peat, T. S., Frank, E. G., Woodgate, R. & Hendrickson, W. A. (1996). Production and crystallization of a selenomethionyl variant of UmuD′, an Escherichia coli SOS response protein. Proteins, 25, 506–509.Google Scholar
Price, S. R. & Nagai, K. (1995). Protein engineering as a tool for crystallography. Curr. Opin. Biotech. 6, 425–430.Google Scholar
Privé, G. G., Verner, G. E., Weitzman, C., Zen, K. H., Eisenberg, D. & Kaback, H. R. (1994). Fusion proteins as tools for crystallization: the lactose permease from Escherichia coli. Acta Cryst. D50, 375–379.Google Scholar
Scott, C. A., Garcia, K. C., Stura, E. A., Peterson, P. A., Wilson, I. A. & Teyton, L. (1998). Engineering protein for X-ray crystallography: the murine major histocompatibility complex class II molecule I-A. Protein Sci. 7, 413–418.Google Scholar
Stoll, V. S., Manohar, A. V., Gillon, W., Macfarlane, E. L. A., Hynes, R. C. & Pai, E. F. (1998). A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase from Enterococcus faecium: cloning, expression, purification, kinetic analysis, and crystallization. Protein Sci. 7, 1147–1155.Google Scholar
Sun, D.-P., Alber, T., Bell, J. A., Weaver, L. H. & Matthews, B. W. (1987). Use of site-directed mutagenesis to obtain isomorphous heavy-atom derivatives for protein crystallography: cysteine-containing mutants of phage T4 lysozyme. Protein Eng. 1, 115–123.Google Scholar
Windsor, W. T., Walter, L. J., Syto, R., Fossetta, J., Cook, W. J., Nagabhushan, T. L. & Walter, M. R. (1996). Purification and crystallization of a complex between human interferon γ receptor (extracellular domain) and human interferon γ. Proteins, 26, 108–114.Google Scholar
Yang, W., Hendrickson, W. A., Crouch, R. J. & Satow, Y. (1990). Structure of ribonuclease H phased at 2 Å resolution by MAD analysis of the selenomethionyl protein. Science, 249, 1398–1405.Google Scholar
Yang, W., Hendrickson, W. A., Kalman, E. T. & Crouch, R. J. (1990). Expression, purification, and crystallization of natural and selenomethionyl recombinant ribonuclease H from Escherichia coli. J. Biol. Chem. 265, 13553–13559.Google Scholar
Zhang, G., Liu, Y., Qin, J., Vo, B., Tang, W.-J., Ruoho, A. E. & Hurley, J. H. (1997). Characterization and crystallization of a minimal catalytic core domain from mammalian type II adenylyl cyclase. Protein Sci. 6, 903–908.Google Scholar
Zhang, X., Wozniak, J. A. & Matthews, B. W. (1995). Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme. J. Mol. Biol. 250, 527–552.Google Scholar