International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 5.1, pp. 111-116   | 1 | 2 |
https://doi.org/10.1107/97809553602060000663

Chapter 5.1. Crystal morphology, optical properties of crystals and crystal mounting

H. L. Carrella* and J. P. Gluskera

aThe Institute for Cancer Research, The Fox Chase Cancer Center, Philadelphia, PA 19111, USA
Correspondence e-mail:  hl_carrell@fccc.edu

References

First citation Åkervall, K. & Strandberg, B. (1971). X-ray diffraction studies of the satellite tobacco necrosis virus. III. A new crystal mounting method allowing photographic recording of 3 Å diffraction data. J. Mol. Biol. 62, 625–627.Google Scholar
First citation Blundell, T. L. & Johnson, L. N. (1976). Protein crystallography. New York, London, San Francisco: Academic Press.Google Scholar
First citation Breyer, W. A., Kingston, R. L., Anderson, B. F. & Baker, E. N. (1999). On the molecular-replacement problem in the presence of merohedral twinning: structure of the N-terminal half-molecule of human lactoferrin. Acta Cryst. D55, 129–138.Google Scholar
First citation Britton, D. (1972). Estimation of twinning parameter for twins with exactly superimposed reciprocal lattices. Acta Cryst. A28, 296–297.Google Scholar
First citation Bunn, C. W. (1945). Chemical crystallography. An introduction to optical and X-ray methods. Oxford: Clarendon Press.Google Scholar
First citation Ducruix, A. & Giegé, R. (1992). Editors. Crystallization of nucleic acids and proteins. A practical approach. Oxford, New York, Tokyo: IRL Press.Google Scholar
First citation Dyda, F., Hickman, A. B., Jenkins, T. M., Engelman, A., Craigie, R. & Davies, D. R. (1994). Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science, 266, 1981–1986.Google Scholar
First citation Frey, M., Genovesio-Taverne, J.-C. & Fontecilla-Camps, J. C. (1988). Application of the periodic bond chain (PBC) theory to the analysis of the molecular packing in protein crystals. J. Cryst. Growth, 90, 245–258.Google Scholar
First citation Gomis-Rüth, F. X., Fita, I., Kiefersauer, R., Huber, R., Avilés, F. X. & Navaza, J. (1995). Determination of hemihedral twinning and initial structural analysis of crystals of the procarboxypeptidase A ternary complex. Acta Cryst. D51, 819–823.Google Scholar
First citation Hartman, P. & Perdok, W. G. (1955a). On the relations between structure and morphology of crystals. I. Acta Cryst. 8, 49–52.Google Scholar
First citation Hartman, P. & Perdok, W. G. (1955b). On the relations between structure and morphology of crystals. II. Acta Cryst. 8, 521–524.Google Scholar
First citation Hartman, P. & Perdok, W. G. (1955c). On the relations between structure and morphology of crystals. III. Acta Cryst. 8, 525–529.Google Scholar
First citation Hartshorne, N. H. & Stuart, A. (1960). Crystals and the polarising microscope. A handbook for chemists and others, 3rd ed. London: Edward Arnold & Co.Google Scholar
First citation Igarashi, N., Moriyama, H., Mikami, T. & Tanaka, N. (1997). Detwinning of hemihedrally twinned crystals by the least-squares method and its application to a crystal of hydroxylamine oxidoreductase from Nitrosomonas europaea. J. Appl. Cryst. 30, 362–367.Google Scholar
First citation Kerfeld, C. A., Wu, Y. P., Chan, C., Krogmann, D. W. & Yeates, T. O. (1997). Crystals of the carotenoid protein from Arthrospira maxima containing uniformly oriented pigment molecules. Acta Cryst. D53, 720–723.Google Scholar
First citation Kudryavtsev, A. B., Mirov, S. B., DeLucas, L. J., Nicolete, C., van der Woerd, M., Bray, T. L. & Basiev, T. T. (1998). Polarized Raman spectroscopic studies of tetragonal lysozyme single crystals. Acta Cryst. D54, 1216–1229.Google Scholar
First citation McPherson, A. & Shlichta, P. (1988). Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science, 239, 385–387.Google Scholar
First citation McRee, D. E. (1993). Practical protein crystallography, pp. 21–28. San Diego, New York: Academic Press.Google Scholar
First citation Matthews, B. W. (1968). Solvent content in protein crystals. J. Mol. Biol. 33, 491–497.Google Scholar
First citation Mighell, A. D., Rodgers, J. R. & Karen, V. L. (1993). Protein symmetry: metric and crystal (a precautionary note). J. Appl. Cryst. 26, 68–70.Google Scholar
First citation Nadarajah, A., Li, M. & Pusey, M. L. (1997). Growth mechanism of the (110) face of tetragonal lysozyme crystals. Acta Cryst. D53, 524–534.Google Scholar
First citation Nadarajah, A. & Pusey, M. L. (1996). Growth mechanism and morphology of tetragonal lysozyme crystals. Acta Cryst. D52, 983–996.Google Scholar
First citation Oki, H., Matsuura, Y., Komatsu, H. & Chernov, A. A. (1999). Refined structure of orthorhombic lysozyme crystallized at high temperature: correlation between morphology and intermolecular contacts. Acta Cryst. D55, 114–121.Google Scholar
First citation Perutz, M. F. (1939). Absorption spectra of single crystals of haemoglobin in polarized light. Nature (London), 143, 731–733.Google Scholar
First citation Petsko, G. (1985). Flow cell construction and use. Methods Enzymol. 114, 141–146.Google Scholar
First citation Phillips, F. C. (1957). An introduction to crystallography, 2nd ed. London, New York, Toronto: Longmans Green & Co.Google Scholar
First citation Rayment, I. (1985). Treatment and manipulation of crystals. Methods Enzymol. 114, 136–140.Google Scholar
First citation Rayment, I., Johnson, J. E. & Suck, D. (1977). A method for preventing crystal slippage in macromolecular crystallography. J. Appl. Cryst. 10, 365.Google Scholar
First citation Rees, D. C. (1980). The influence of twinning by merohedry on intensity statistics. Acta Cryst. A36, 578–581.Google Scholar
First citation Reichert, E. T. & Brown, A. P. (1909). The differentiation and specificity of corresponding proteins and other vital substances in relation to biological classification and organic evolution: the crystallography of hemoglobins. Washington DC: Carnegie Institution of Washington. (Publication No. 116.)Google Scholar
First citation Sawyer, L. & Turner, M. A. (1992). X-ray analysis. In Crystallization of nucleic acids and proteins. A practical approach, edited by A. Ducruix & R. Giegé, pp. 267–274. Oxford, New York, Tokyo: IRL Press.Google Scholar
First citation Stanley, E. (1972). The identification of twins from intensity statistics. J. Appl. Cryst. 5, 191–194.Google Scholar
First citation Steinrauf, L. K. (1959). Preliminary X-ray data for some new crystalline forms of β-lactoglobulin and hen egg-white lysozyme. Acta Cryst. 12, 77–79.Google Scholar
First citation Wahlstrom, E. E. (1979). Optical crystallography, 5th ed. New York, Chichester, Brisbane, Toronto: John Wiley.Google Scholar
First citation Yeates, T. O. (1997). Detecting and overcoming crystal twinning. Methods Enzymol. 276, 344–358.Google Scholar
First citation Zhang, K. Y. J. & Eisenberg, D. (1994). Solid-state phase transition in the crystal structure of ribulose 1,5-bisphosphate carboxylase/oxygenase. Acta Cryst. D50, 258–262.Google Scholar