International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 6.2, p. 136   | 1 | 2 |

Section 6.2.1.4.1. Multiwire proportional counters

B. P. Schoenborna* and R. Knottb

a Life Sciences Division M888, University of California, Los Alamos National Laboratory, Los Alamos, NM 8745, USA, and bSmall Angle Scattering Facility, Australian Nuclear Science & Technology Organisation, Physics Division, PMB 1 Menai NSW 2234, Australia
Correspondence e-mail:  schoenborn@lanl.gov

6.2.1.4.1. Multiwire proportional counters

| top | pdf |

The principles of a multiwire proportional counter (MWPC) are well established (Sauli, 1977[link]) and have wide application. For thermal neutron detection (Radeka et al., 1996[link]), the reaction of choice is [^{3}\hbox{He} + \hbox{n} \rightarrow {}^{3}\hbox{H} + \hbox{p} + 764\hbox{ keV}.]

The 191 keV triton and the 573 keV proton are emitted in opposite directions and create a charge cloud whose dimensions are determined primarily by the pressure of a stopping gas. Depending on the work function of the gas mixture, approximately [3\times 10^{4}] electron–ion pairs are created. Low-noise gas amplification of this charge cloud occurs in an intense electric field created in the vicinity of the small diameter (20–30 µm) anode wires (Radeka, 1988[link]). Typical gas gains of ~10–50 lead to a total charge on the anode of ~50–100 fC. The efficiency of the detector is determined by the pressure of 3He, and the spatial resolution and count-rate capability are determined by the detector geometry and readout system. The event decoding is selected from the time difference (Borkowski & Kopp, 1975[link]), charge division (Alberi et al., 1975[link]), centroid-finding filter (Radeka & Boie, 1980[link]), or wire-by-wire techniques (Jacobé et al., 1983[link]; Knott et al., 1997[link]). Present MWPC technology offers opportunities and challenges to design a detector system that is totally integrated into the instrument design and optimizes data collection rate and accuracy (Schoenborn et al., 1985[link], 1986[link]; Schoenborn, 1992b[link]).

A concept related to the MWPC is the micro-strip gas chamber (MSGC). With the MSGC, the general principles of gas detection and amplification apply; however, the anode is deposited on a suitable substrate (Oed, 1988[link], 1995[link]; Vellettaz et al., 1997[link]). The MSGC can potentially improve the performance of the MWPC in some applications, particularly with respect to spatial resolution and count-rate capability.

References

First citation Alberi, J., Fischer, J., Radeka, V., Rogers, L. C. & Schoenborn, B. P. (1975). A two-dimensional position-sensitive detector for thermal neutrons. Nucl. Instrum. Methods, 127, 507–523.Google Scholar
First citation Borkowski, C. J. & Kopp, M. K. (1975). Design and properties of position-sensitive proportional counters using resistance-capacitance position encoding. Rev. Sci. Instrum. 46, 951–962.Google Scholar
First citation Jacobé, J., Feltin, D., Rambaud, A., Ratel, F., Gamon, M. & Pernock, J. B. (1983). High pressure 3He multielectrode detectors for neutron localisation. In Position-sensitive detection of thermal neutrons, edited by P. Convert & J. B. Forsyth, pp. 106–119. London: Academic Press.Google Scholar
First citation Knott, R. B., Smith, G. C., Watt, G. & Boldeman, J. B. (1997). A large 2D PSD for thermal neutron detection. Nucl. Instrum. Methods A, 392, 62–67.Google Scholar
First citation Oed, A. (1988). Position-sensitive detector with microstrip anode for electron multiplication with gases. Nucl. Instrum. Methods A, 263, 351–359.Google Scholar
First citation Oed, A. (1995). Properties of micro-strip gas chambers (MSGC) and recent developments. Nucl. Instrum. Methods A, 367, 34–40.Google Scholar
First citation Radeka, V. (1988). Low noise techniques in detectors. Annu. Rev. Nucl. Part. Sci. 38, 217–277.Google Scholar
First citation Radeka, V. & Boie, R. A. (1980). Centroid finding method for position-sensitive detectors. Nucl. Instrum. Methods, 178, 543–554.Google Scholar
First citation Radeka, V., Schaknowski, N. A., Smith, G. C. & Yu, B. (1996). High precision thermal neutron detectors. In Neutrons in biology, edited by B. P. Schoenborn & R. B. Knott, pp. 57–67. New York: Plenum Press.Google Scholar
First citation Sauli, F. (1977). Principles of operation of multiwire proportional and drift chambers. Report CERN-77-09. CERN, Geneva, Switzerland.Google Scholar
First citation Schoenborn, B. P. (1992b). Area detectors for neutron protein crystallography. SPIE, 1737, 235–243.Google Scholar
First citation Schoenborn, B. P., Saxena, A. M., Stamm, M., Dimmler, G. & Radeka, V. (1985). A neutron spectrometer with a two-dimensional detector for time resolved studies. Aust. J. Phys. 38, 337–351.Google Scholar
First citation Schoenborn, B. P., Schefer, J. & Schneider, D. (1986). The use of wire chambers in structural biology. Nucl. Instrum. Methods A, 252, 180–187.Google Scholar
First citation Vellettaz, N., Assaf, J. E. & Oed, A. (1997). Two dimensional gaseous microstrip detector for thermal neutrons. Nucl. Instrum. Methods A, 392, 73–79.Google Scholar








































to end of page
to top of page