International
Tables for
Crystallography
Volume F
Crystallography of biological macromolecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F, ch. 7.1, pp. 143-147   | 1 | 2 |
https://doi.org/10.1107/97809553602060000667

Chapter 7.1. Comparison of X-ray detectors

S. M. Gruner,a* E. F. Eikenberryb and M. W. Tatea

aDepartment of Physics, 162 Clark Hall, Cornell University, Ithaca, NY 14853-2501, USA, and bSwiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
Correspondence e-mail:  smg26@cornell.edu

References

Amemiya, Y., Matsushita, T., Nakagawa, A., Satow, Y., Miyahara, J. & Chikawa, J.-I. (1988). Design and performance of an imaging plate system for X-ray diffraction study. Nucl. Instrum. Methods Phys. Res. A, 266, 645–653.Google Scholar
Arndt, U. W. (1991). Second-generation X-ray television area detectors. Nucl. Instrum. Methods Phys. Res. A, 310, 395–397.Google Scholar
Arndt, U. W., Gilmore, D. J. & Wonacott, A. J. (1977). X-ray film. In The rotation method in crystallography, edited by U. W. Arndt & A. J. Wonacott, pp. 207–218. Amsterdam: North-Holland Publishing Co.Google Scholar
Barbosa, A. F., Gabriel, A. & Craievich, A. (1989). An X-ray gas position-sensitive detector – construction and characterization. Rev. Sci. Instrum. 60, 2315–2317.Google Scholar
Barna, S. L., Shepherd, J. A., Tate, M. W., Wixted, R. L., Eikenberry, E. F. & Gruner, S. M. (1997). Characterization of prototype pixel array detector (PAD) for use in microsecond framing time-resolved X-ray diffraction studies. IEEE Trans. Nucl. Sci. 44, 950–956.Google Scholar
Barna, S. L., Tate, M. W., Gruner, S. M. & Eikenberry, E. F. (1999). Calibration procedures for charge-coupled device X-ray detectors. Rev. Sci. Instrum. 70, 2927–2934.Google Scholar
Blum, M., Metcalf, P., Harrison, S. C. & Wiley, D. C. (1987). A system for collection and on-line integration of X-ray diffraction data from a multiwire area detector. J. Appl. Cryst. 20, 235–242.Google Scholar
Charpak, G. (1982). Parallax-free, high-accuracy gaseous detectors for X-ray and VUV localization. Nucl. Instrum. Methods, 201, 181–192.Google Scholar
Datte, P., Beuville, E., Millaud, J. & Xuong, N.-H. (1999). A digital pixel address generator for pixel array detectors. Nucl. Instrum. Methods Phys. Res. A, 421, 492–501.Google Scholar
Eikenberry, E. F., Tate, M. W., Bilderback, D. H. & Gruner, S. M. (1992). X-ray detectors: comparison of film, storage phosphors and CCD detectors. Inst. Phys. Conf. Ser. 121, 273–280.Google Scholar
Farrell, R., Vanderpuye, K., Cirignano, L., Squillante, M. R. & Entine, G. (1994). Radiation detection performance of very high-gain avalanche photodiodes. Nucl. Instrum. Methods Phys. Res. A, 353, 176–179.Google Scholar
Fujita, H., Tsai, D.-Y., Itoh, T., Doi, K., Morishita, J., Ueda, K. & Ohtsuka, A. (1992). A simple method for determining the modulation transfer-function in digital radiography. IEEE Trans. Med. Imaging, 11, 34–39.Google Scholar
Gramsch, E., Szawlowski, M., Zhang, S. & Madden, M. (1994). Fast, high-density avalanche photodiode-array. IEEE Trans. Nucl. Sci. 41, 762–766.Google Scholar
Gruner, S. M., Milch, J. R. & Reynolds, G. T. (1978). Evaluation of area photon detectors by a method based on detective quantum efficiency (DQE). IEEE Trans. Nucl. Sci. NS-25, 562–565.Google Scholar
Hall, G. (1995). Silicon pixel detectors for X-ray diffraction studies at synchrotron sources. Q. Rev. Biophys. 28, 1–32.Google Scholar
Hamlin, R., Cork, C., Howard, A., Nielsen, C., Vernon, W., Matthews, D. & Xuong, N. H. (1981). Characteristics of a flat multiwire area detector for protein crystallography. J. Appl. Cryst. 14, 85–93.Google Scholar
Iles, G., Raymond, M., Hall, G., Lovell, M., Seller, P. & Sharp, P. (1996). Hybrid pixel detector for time resolved X-ray diffraction experiments at synchrotron sources. Nucl. Instrum. Methods Phys. Res. A, 381, 103–111.Google Scholar
Krause, K. L. & Phillips, G. N. Jr (1992). Experience with commercial area detectors: a `buyer's' perspective. J. Appl. Cryst. 25, 146–154.Google Scholar
Ludewigt, B., Jaklevic, J., Kipnis, I., Rossington, C. & Spieler, H. (1994). A high-rate, low-noise, X-ray silicon strip detector system. IEEE Trans. Nucl. Sci. 41, 1037–1041.Google Scholar
Milch, J. R., Gruner, S. M. & Reynolds, G. T. (1982). Area detectors capable of recording X-ray diffraction patterns at high count rates. Nucl. Instrum. Methods, 201, 43–52.Google Scholar
Moy, J.-P. (1999). Large area X-ray detectors based on amorphous silicon detector. Thin Solid Films, 337, 213.Google Scholar
Rehak, P., Walton, J., Gatti, E., Longoni, A., Sanpietro, M., Kemmer, J., Dietl, H., Holl, P., Klanner, R., Lutz, G., Wylie, A. & Becker, H. (1986). Progress in semiconductor drift detectors. Nucl. Instrum. Methods Phys. Res. B, 248, 367–378.Google Scholar
Rossi, G., Renzi, M., Eikenberry, E. F., Tate, M. W., Bilderback, D., Fontes, E., Wixted, R., Barna, S. & Gruner, S. M. (1999). Tests of a prototype pixel array detector for microsecond time-resolved X-ray diffraction. J. Synchrotron Rad. 6, 1096–1105.Google Scholar
Sarvestani, A., Besch, H. J., Junk, M., Meissner, W., Pavel, N., Sauer, N., Stiehler, R., Walenta, A. H. & Menk, R. H. (1998). Gas amplifying hole structures with resistive position encoding: a new concept for a high rate imaging pixel detector. Nucl. Instrum. Methods Phys. Res. A, 419, 444–451.Google Scholar