International
Tables for
Crystallography
Volume F
Crystallography of biological molecules
Edited by M. G. Rossmann and E. Arnold

International Tables for Crystallography (2006). Vol. F. ch. 8.1, p. 165   | 1 | 2 |

Section 8.1.8.4.  Multi-macromolecular complexes

J. R. Helliwella*

aDepartment of Chemistry, University of Manchester, M13 9PL, England
Correspondence e-mail: john.helliwell@man.ac.uk

8.1.8.4. Multi-macromolecular complexes

| top | pdf |

Multi-macromolecular complexes, such as viruses (Rossmann et al., 1985[link]; Acharya et al., 1989[link]; Liddington et al., 1991[link]) (Fig. 8.1.8.2[link]), the nucleosome (Luger et al., 1997[link]), light-harvesting complex (McDermott et al., 1995[link]) and the 13-subunit membrane-bound protein cytochrome c oxidase (Tsukihara et al., 1996[link]), and large-scale molecular assemblies like muscle (Holmes, 1998[link]) are very firmly recognizable as biological entities whose crystal structure determinations rely on SR. These single-crystal structure determinations involve extremely large unit cells and are now tractable despite very weak scattering strength. The crystals often show extreme sensitivity to radiation (hundreds, even a thousand, crystals have been used to constitute a single data set). Cryocrystallography radiation protection is now used extensively in crystallographic data collection on whole ribosome crystals (Hope et al., 1989[link]); SR is essential for this structure determination (Yonath, 1992[link]; Yonath et al., 1998[link]; Ban et al., 1998[link]). These large-scale molecular assemblies often combine electron-microscope and diffraction techniques with SR X-ray crystallography and diffraction for low-to-high resolution detail, respectively. A major surge in results has come from the ESRF, where the X-ray undulator radiation, of incredible intensity and collimation in a number of beamlines (Helliwell, 1987[link]; Miller, 1994[link]; Branden, 1994[link]; Lindley, 1999[link]), has been harnessed to yield atomic level crystal structures of the 780 Å diameter blue tongue virus (Grimes et al., 1997[link], 1998[link]) and the nucleosome core particle (Luger et al., 1997[link]). A very large multi-protein complex solved using data from the Daresbury SRS wiggler is the F1 ATPase structure (Fig. 8.1.8.3[link]), for which a share in the Nobel Prize for Chemistry in 1997 was awarded to John Walker in Cambridge. The structure (Abrahams et al., 1994[link]; Abrahams & Leslie, 1996[link]) and the amino-acid sequence data, along with fluorescence microscopy, show how biochemical energy is harnessed to drive the proton pump across biological membranes, thus corroborating hypotheses about this process made over many years. This study, made tractable by the SRS wiggler high-intensity protein crystallography station (Fig. 8.1.4.1[link]), illustrates the considerable further scope possible with yet stronger, more brilliant SR undulator and multipole wiggler sources.

[Figure 8.1.8.2]

Figure 8.1.8.2| top | pdf |

A view of SV40 virus (based on Liddington et al., 1991[link]) determined using data recorded at the SRS wiggler station 9.6 (Fig. 8.1.4.1a[link]).

[Figure 8.1.8.3]

Figure 8.1.8.3| top | pdf |

The protein crystal structure of F1 ATPase, one of the largest non-symmetrical protein structure complexes, solved using SR data recorded at the SRS wiggler 9.6, Daresbury. The scale bar is 20 Å long. Reprinted with permission from Nature (Abrahams et al., 1994[link]). Copyright (1994) MacMillan Magazines Limited.

References

First citation Abrahams, J. P. & Leslie, A. G. W. (1996). Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Cryst. D52, 30–42.Google Scholar
First citation Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature (London), 370, 621–628.Google Scholar
First citation Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D. & Brown, F. (1989). The 3-dimensional structure of foot and mouth disease virus at 2.9 Å resolution. Nature (London), 337, 709–716.Google Scholar
First citation Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B. & Steitz, T. A. (1998). A 9 Å resolution X-ray crystallographic map of the large ribosomal subunit. Cell, 93, 1105–1115.Google Scholar
First citation Branden, C. I. (1994). The new generation of synchrotron machines. Structure, 2, 5–6.Google Scholar
First citation Grimes, J. M., Burroughs, J. N., Gouet, P., Diprose, J. M., Malby, R., Zientara, S., Mertens, P. P. C. & Stuart, D. I. (1998). The atomic structure of the bluetongue virus core. Nature (London), 395, 470–478.Google Scholar
First citation Grimes, J. M., Jakana, J., Ghosh, M., Basak, A. K., Roy, P., Chiu, W., Stuart, D. I. & Prasad, B. V. V. (1997). An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure, 5, 885–893.Google Scholar
First citation Helliwell, J. R. (1987). Instruments for macromolecular crystallography at the ESRF. In ESRF Foundation Phase Report, pp. 329–340. Grenoble: ESRF.Google Scholar
First citation Holmes, K. C. (1998). A molecular model for muscle contraction. Acta Cryst. A54, 789–797.Google Scholar
First citation Hope, H., Frolow, F., von Böhlen, K., Makowski, I., Kratky, C., Halfon, Y., Danz, H., Webster, P., Bartels, K. S., Wittmann, H. G. & Yonath, A. (1989). Cryocrystallography of ribosomal particles. Acta Cryst. B45, 190–199.Google Scholar
First citation Liddington, R. C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T. L. & Harrison, S. C. (1991). Structure of simian virus-40 at 3.8 Å resolution. Nature (London), 354, 278–284.Google Scholar
First citation Lindley, P. F. (1999). Macromolecular crystallography with a third-generation synchrotron source. Acta Cryst. D55, 1654–1662.Google Scholar
First citation Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature (London), 389, 251–260.Google Scholar
First citation McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., Papiz, M. Z., Cogdell, R. J. & Isaacs, N. W. (1995). Crystal structure of an integral membrane light harvesting complex from photosynthetic bacteria. Nature (London), 374, 517–521.Google Scholar
First citation Miller, A. (1994). Advanced synchrotron sources – Plans at ESRF in SR in biophysics, edited by S. S. Hasnain. Chichester: Ellis Horwood.Google Scholar
First citation Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B. & Vriend, G. (1985). Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London), 317, 145–153.Google Scholar
First citation Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R. & Yoshikawa, S. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136–1144.Google Scholar
First citation Yonath, A. (1992). Approaching atomic resolution in crystallography of ribosomes. Annu. Rev. Biophys. Biomol. Struct. 21, 77–93.Google Scholar
First citation Yonath, A., Harms, J., Hansen, H. A. S., Bashan, A., Schlünzen, F., Levin, I., Koelln, I., Tocilj, A., Agmon, I., Peretz, M., Bartels, H., Bennett, W. S., Krumbholz, S., Janell, D., Weinstein, S., Auerbach, T., Avila, H., Piolleti, M., Morlang, S. & Franceschi, F. (1998). Crystallographic studies on the ribosome, a large macromolecular assembly exhibiting severe nonisomorphism, extreme beam sensitivity and no internal symmetry. Acta Cryst. A54, 945–955.Google Scholar








































to end of page
to top of page