
2. CONCEPTS AND SPECIFICATIONS

The preferred behaviour of a CIF application is to determine
the type of a data value by looking up the corresponding dictio-
nary definition. However, some CIF-reading software may not be
designed with the ability to parse dictionaries; and indeed any
CIF reader may encounter data names that are not defined in a
public or accompanying dictionary. It is therefore appropriate to
adopt a strategy of interpreting as a number any data value that
looks like one, i.e. adopts any of the permitted ways to represent
a numeric value. Therefore, in the absence of a specific counter-
indication (from a dictionary definition), the data value in the fol-
lowing example may be taken as the numeric (integer) value 1:

_unknown_data_name 1

On the other hand, if _unknown_data_name were explicitly defined
in a dictionary with a data type of ‘char’, then the value should be
stored as the literal character 1.

This is a subtle point, perhaps of interest only to software
authors. Nevertheless, the consistent behaviour of CIF applications
will depend on correct implementation of this behaviour.

The data type char covers single characters or extended charac-
ter strings. Since CIF tokens are separated by white space, any
character string that includes white-space characters (including
line-terminating characters) must be delimited by one or other of
a set of special characters used for this purpose. The detailed rules
for quoting such strings are given in Section 2.2.7.1.4 and com-
prise the standard CIF syntax rules for this case. No semantic dis-
tinction is made in general between short character strings and text
strings that extend over several lines, described in the specification
document as ‘text fields’, although again particular CIF applica-
tions may choose to impose distinctions. Note that numbers within
a quoted string or a text block (bounded by semicolons in column
1) are not interpreted as type ‘numb’ but as type ‘char’.

The data type uchar was introduced explicitly at revision 1.1 of
the CIF specification, and is intended to formalize the description
and automated handling of certain strings in CIFs that are case-
insensitive (such as data names and data-block headers).

The data type null is a special type that has two uses. It is applied
to items for which no definite value may be stored in computer
memory. As such it is a formal device for allowing the introduc-
tion of data names into dictionary files that do not represent data
values permissible within a data file instance. The usual example
is that of the special data names introduced in DDL1 dictionaries
(such as the core dictionary) to discuss categories.

The more important use of the null data type is its application to
the meta characters ‘?’ (query) and ‘.’ (full point) that may occur
as values associated with any data name and therefore have no
specific type. (Arguably, for this case ‘any’ might be a better type
descriptor than ‘null’.)

The substitution of the query character ‘?’ in place of a data
value is an explicit signal that an expected value is missing from a
CIF. This ‘missing-value signal’ may be used instead of omitting
an item (i.e. its tag and value) entirely from the file, and serves as
a reminder that the item would normally be present.

The substitution of the full-point character ‘.’ in place of a CIF
data value serves two similar, but not identical, purposes. If it is
used in looped lists of data it is normally a signal that a value in a
particular packet (i.e. a value in the row of the table) is ‘inapplica-
ble’ or ‘inappropriate’. In some CIF applications involving access
to a data dictionary it is used to signal that the default value of the
item is defined in its definition in the dictionary. Consequently, the
interpretation of this signal is an application-specific matter and its
use must be determined according to the application. For example,
in a CIF submitted for publication in Acta Crystallographica the

presence of a ‘.’ value for the item _geom_bond_site_symmetry_1

is predetermined as the default value 1 555 (as per the dictionary
definition). Note that, in this instance, it is also equivalent to ‘no
additional symmetry’ or ‘inapplicable’.

2.2.5.3. Extended data typing: content type and encoding

The initial implementation of CIF assumed that most character
strings would represent identifiers or terse descriptions or com-
ments, and that the correct behaviour of the majority of CIF appli-
cations would be simply to store these in computer memory or
retrieve them verbatim. Only a few data values were foreseen as
having extended content that might need special handling. For
example, the complete text of a manuscript was envisaged as being
included in the field _publ_manuscript_processed. The handling
of this field (its extraction and typesetting) would be left to unspec-
ified external agents, although some clue as to the provenance
of the contents of that field (and thus their appropriate handling)
would be given by _publ_manuscript_creation.

However, the evolution of CIF applications has required that
some element of typographic markup be permitted in a growing
number of data values, and future applications may be envisaged in
which graphical images, virtual-reality models, spreadsheet tables
or other complex objects are embedded as the values of specific
data items. Since it will not be possible to write general-purpose
CIF applications capable of handling all such embedded content,
techniques will need to be developed for transferring each such
field to a specialized but separate content handler. In the mean-
time, the rather ad hoc conventions for introducing typographic
markup available at present are described in Sections 2.2.7.4.13–
17. It is hoped that in the future different types of such markup
may be permitted so long as the data values affected can be tagged
with an indication of their content type that allows the appropriate
content handlers to be invoked.

It has also been necessary to allow native binary objects to be
incorporated as CIF data values. This was done to support the stor-
age of the large arrays of image data obtained from area detectors.
Since the CIF character set is based on printable ASCII charac-
ters only, encodings including compression have been developed
to permit interconversion between ASCII and binary representa-
tions of such data (see Chapter 2.3).

Nowadays, arbitrary embedded objects may be transported in
web pages via the http protocol (Fielding et al., 1999) or as attach-
ments to email messages structured according to the MIME pro-
tocols (e.g. Freed & Borenstein, 1996). Identification of encoding
techniques and hooks to invoke suitable handlers are carried in the
relevant Content-Type and Content-Encoding http or MIME head-
ers. It is suggested that this may form the basis of suitable tagging
of content types and encoding for future CIF development.

A candidate for a CIF-specific encoding protocol is the
special convention introduced with CIF version 1.1 to intercon-
vert long lines of text between the new and old length lim-
its (Section 2.2.7.4.11). This is an encoding in the sense that it
is a device designed to retain any semantic content implicit in
textual layout, while conforming to slightly different rules of syn-
tax. It is designed to enable CIFs written to the longer line-length
specification to be transformed so that they can still be handled
by older software. Since the object of the exercise is to manage
legacy applications, it is likely that the interconversion will be done
through external applications, or filters, designed specifically for
the purpose. Such a conversion filter is conceptually the same as a
filter to convert a binary file into an ASCII base-64 encoding, for
example.

24 references

International Tables for Crystallography (2006). Vol. G, Section 2.2.5.3, p. 24.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch2o2v0001/references/
http://it.iucr.org/Ga/ch2o2v0001/sec2o2o5o3/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

