
2.2. SPECIFICATION OF THE CRYSTALLOGRAPHIC INFORMATION FILE (CIF)
Table 2.2.7.1. (cont.)

(f) White space and comments.

Case
Syntactic unit Syntax sensitive?

<WhiteSpace> {<SP>|<HT>|<eol>|<TokenizedComments>}+ yes
<Comments> { ’#’ {<AnyPrintChar>}* <eol>}+ yes
<TokenizedComments> {<SP>|<HT>|<eol>|}+ <Comments> yes

(g) Character sets.

Case
Syntactic unit Syntax sensitive?

<OrdinaryChar> { ’!’|’%’|’&’|’(’|’)’|’*’|’+’|’,’|’-’|’.’|’/’|’0’|’1’|’2’|’3’|’4’|’5’| yes
’6’|’7’|’8’|’9’|’:’|’<’|’=’|’>’|’?’|’@’|’A’|’B’|’C’|’D’|’E’|’F’|’G’|’H’|
’I’|’J’|’K’|’L’|’M’|’N’|’O’|’P’|’Q’|’R’|’S’|’T’|’U’|’V’|’W’|’X’|’Y’|’Z’|
’\’|’ˆ’|’‘’|’a’|’b’|’c’|’d’|’e’|’f’|’g’|’h’|’i’|’j’|’k’|’l’|’m’|’n’|’o’|
’p’|’q’|’r’|’s’|’t’|’u’|’v’|’w’|’x’|’y’|’z’|’{’|’|’|’}’|’˜’ }

<NonBlankChar> <OrdinaryChar>|<double_quote>|’#’|’$’|<single_quote>|’_’ |’;’|’[’|’]’ yes
<TextLeadChar> <OrdinaryChar>|<double_quote>|’#’|’$’|<single_quote>|’_’|<SP>|<HT>|’[’|’]’ yes
<AnyPrintChar> <OrdinaryChar>|<double_quote>|’#’|’$’|<single_quote>|’_’|<SP>|<HT>|’;’|’[’|’]’ yes

2.2.7.1.10. Version identification

(34) As an archival file format, the CIF specification is expected
to change infrequently. Revised specifications will be issued to
accompany each substantial modification. A CIF may be consid-
ered compliant against the most recent version for which in prac-
tice it satisfies all syntactic and content rules as detailed in the for-
mal specification document. However, to signal the version against
which compliance was claimed at the time of creation, or to signal
the file type and version to applications (such as operating-system
utilities), it is recommended that a CIF begin with a structured
comment that identifies the version of CIF used. For CIFs com-
pliant with the current specification, the first 11 bytes of the file
should be the string

#\#CIF_1.1

immediately followed by one of the white-space characters permit-
ted in paragraph (22).

2.2.7.2. A formal grammar for CIF

2.2.7.2.1. Summary

(35) The rows of Table 2.2.7.1 are called ‘productions’. Pro-
ductions are rules for constructing sentences in a language. They
are written in terms of ‘terminal symbols’ and ‘non-terminal sym-
bols’. ‘Terminal symbols’ are what actually appear in a language.
For example, ’poodle’ might be given as a string of terminal sym-
bols in some language discussing dogs. Non-terminal symbols are
the higher-level constructs of the language, e.g. sentences, clauses,
etc. For example <DOG> might be given as a non-terminal symbol in
some language discussing dogs. Productions may be used to infer
rules for parsing the language. For example,

<DOG> ::= { ’poodle’|’terrier’|’bulldog’|’greyhound’ }

might be given as a rule telling us what names of types of dogs
we are allowed to write in this language. In this table, terminal
symbols (i.e. terminal character strings) are enclosed in single
quotes. To avoid confusion, the terminal symbol consisting of a
single quote (i.e. an apostrophe) is indicated by <single_quote>

and the terminal symbol consisting of a double quote is indicated
by <double_quote>. The printable space character is indicated by
<SP>, the horizontal tab character by <HT> and the end of a line

by <eol>. To allow for the occurrence of a semicolon as the ini-
tial character of an unquoted character string, provided it is not the
first character in a line of text, the special symbol <noteol> is used
below to indicate any character that is not interpretable as a line ter-
minator. The cases of context sensitivity involving the beginning
of text fields and the ends of quoted strings are discussed below,
but they are most commonly resolved in a lexical scan.

(36) Productions can be used to produce documents, or equiv-
alently to check a document to see if it is valid in this grammar.
The angle brackets delimit names for the syntactic units (the ‘non-
terminal symbols’) being defined. The curly braces enclose alter-
natives separated by vertical bars and/or followed by a plus sign for
‘one or more’, an asterisk for ‘zero or more’ or a question mark for
‘zero or one’.

(37) In most cases, each production has a single non-terminal
symbol in the syntactic unit being defined. However, in some
cases, both the syntactic unit and the syntax begin or end with
some common symbol. This indicates that a specific context is
required in order for the rule to be applied. This is done because
the initial semicolon of a semicolon-delimited text field only has
meaning at the beginning of a line, and quoted strings may con-
tain their initial quoting character provided the embedded quot-
ing character is not immediately followed by white space. This
‘context-sensitive’ notation is unusual in defining computer lan-
guages (although very common in the full specifications of many
computer and non-computer languages). This context-sensitive
notation greatly simplifies the definitions and is simple to imple-
ment. The formal definitions are elaborated below.

(38) In the present revision, the production for <TextField> is a
trivial equivalence to <SemiColonTextField>. The redundancy is
retained to permit possible future extensions to text fields, in par-
ticular the possible introduction of a bracket-delimited text value.

2.2.7.2.2. Explanation of the formal syntax

Comment: Readers not familiar with the conventions used in
describing language grammars may wish to consult various lecture
notes on the subject available on the web, e.g. Bernstein (2002).

(39) In creating a parser for CIF, the normal process is to first
perform a ‘lexical scan’ to identify ‘tokens’ in the CIF. A ‘token’
is a grammatical unit, such as a special character, or a tag or a
value, or some major grammatical subunit. In the course of a lexi-
cal scan, the input stream is reduced to manageable pieces, so that

29

International Tables for Crystallography (2006). Vol. G, Section 2.2.7.2, pp. 29–30.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch2o2v0001/sec2o2o7o2/

2. CONCEPTS AND SPECIFICATIONS

the rest of the parsing may be done more efficiently. The conven-
tion followed in this document is to mark the ‘non-terminal’ tokens
that are built up out of actual strings of characters or which do not
have an immediate representation as printable characters by angle
brackets, <>, and to indicate the tokens that are actual strings of
characters as quoted strings of characters.

(40) The precise division between a lexical scan and a full
parse is a matter of convenience. A suggested division is pre-
sented. Before getting to that point, however, there are some highly
machine-dependent matters that need to be resolved. There must
be a clear understanding of the character set to be used, and of
how files and lines begin and end. The character set will be spec-
ified in terms of printable characters and a few control characters
from the 7-bit ASCII character set. In addition, we will need some
means of specifying the end of a line.

(41) The character set in CIF is restricted to the ASCII control
characters <HT> (horizontal tab, position 09 in the ASCII character
set), <NL> (newline, position 10 in the ASCII character set, also
named <LF>) and <CR> (carriage return, position 13 in the ASCII
character set), and the printable characters in positions 32–126 of
the ASCII character set. These are the characters permitted by
STAR with the exception of VT (vertical tab, position 11 in the
ASCII character set) and FF (form feed, position 12 in the ASCII
character set). In general it is poor practice to use characters that
are not common to all national variants of the ISO character set. On
systems or in programming languages that do not ‘work in ASCII’,
the characters themselves may have different numeric values and
in some cases there is no access to all the control characters.

(42) The <eol> token stands for the system-dependent end of
line.

Implementation note: CIF implementations may follow com-
mon HTML and XML practice in handling <eol>:

‘[On many modern systems,] lines are typically separated by some
combination of the characters carriage-return (#xD) and line-feed
(#xA). To simplify the tasks of applications, the characters passed
to an application . . . must be as if the . . . [parser] normalized all
line breaks in external parsed entities . . . on input, before parsing,
[e.g.] by translating both the two-character sequence #xD #xA and
any #xD that is not followed by #xA to a single #xA character.’

(From the XML specification http://www.w3.org/TR/2000/REC-
xml-20001006.)

Because Unix systems use \n (the ASCII LF control character,
or #xA), MS Windows systems use \r\n (the ASCII CR control
character, or #xD, followed by the ASCII LF control character, or
#xA) and classic MacOS systems use \r, a parser which covers a
wide range of systems in a reasonable manner could be constructed
using a pseudo-production for <eol> such as

<eol> ::= { <LF> | <CR><LF> | <CR> }

provided the supporting infrastructure (such as the lexer) deals
with the necessary minor adjustment to ensure that each end of line
is recognized and that all end-of-line control characters are filtered
out from the portions of the text stream that are to be processed
by other productions. One case to handle with care is the end-of-
document case. It is not uncommon to encounter a last line in a
document that is not terminated by any of the above-mentioned
control characters. Instead, it may be terminated by the end of
the character stream or by a special end-of-text-document control
character [e.g. #x4 (control-D) or #x1A (control-Z)]. A CIF parser
should normalize such unterminated terminal lines to appear to an
application as if they had been properly terminated. On the other
hand, care should also be taken so that in multiple generations of

CIF processing such processing does not result in an ever-growing
‘tail’ of empty lines at the end of a CIF document.

This discussion is not meant to imply that a parser for a system
that uses one of these line-termination conventions must recognize
a CIF written using another of these line-termination conventions.

This discussion is not meant to imply that parsers on sys-
tems that use other line-termination conventions and/or non-ASCII
character sets need to handle these ASCII control characters.

In processing a valid CIF document, it is always sufficient that a
parser be able to recognize the line-termination conventions of text
files local to its system environment, and that it be able to recog-
nize the local translations of <SP><HT> and the printable characters
used to construct a CIF.

However, when circumstances permit, if a parser is able to rec-
ognize ‘alien’ line terminations, it is permissible for the parser to
accept and process the CIF in that form without treating it as an
error.

In writing CIF documents, the software that emits lines should
follow the text-file line-termination conventions of the target sys-
tem for which it is writing the CIF documents, and not mix con-
ventions from multiple systems. In transmitting a CIF document
from system to system, software should be used that causes the
document to conform to the line-termination conventions of the
target system. In most cases this objective can best be achieved by
using ‘text’ or ‘ascii’ transmission modes, rather than ‘binary’ or
‘image’ transmission modes.

(43) In order to write the grammar, we need a way to refer to
the single-quote characters which we use both to quote within the
syntax and to quote within a CIF. To avoid system-dependent con-
fusion, we define the following special tokens:

Token Meaning

<SP> ‘ ’, the printable space character
<HT> the horizontal-tab character on the system
<eol> the machine-dependent end of line
<noteol> the complement of the above; any character that does

not indicate the machine-dependent end of line
<single_quote> the apostrophe, ’
<double_quote> the double-quote character, "

(44) There are CIF specifications not definable directly in a
context-free Backus–Naur form (BNF). Restrictions in record and
data-name lengths, and the parsing of text fields and quoted char-
acter strings are best handled in the initial lexical scan. A pure BNF
can then be used to parse the tokenized input stream.

2.2.7.3. Lexical tokens

(45) We define a ‘comment’ to be initiated with the character #.
This can be followed by any sequence of characters (which include
<SP> or <HT>). The only characters not allowed are those in the pro-
duction <eol>, which <eol> terminates a comment. A comment is
recognized only at the beginning of a line or after blanks, i.e. only
after space, tab or <eol>. For this reason we define both comments
and ‘tokenized comments’. No portion of the essential machine-
readable content within a CIF is conveyed by the comments. Com-
ments are for the convenience of human readers of CIFs and may
be freely introduced or removed. Note however the optional struc-
tured comment sanctioned in paragraph (34) above, which has the
purpose of indicating the file type and revision level to general-
purpose file-handling software.

<Comments> ::= { ’#’ {<AnyPrintChar>}* <eol>}+
<TokenizedComments> ::= { <SP>|<HT>|<eol> }+ <Comments>

30 references

http://it.iucr.org/Ga/ch2o2v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

