
2.2. SPECIFICATION OF THE CRYSTALLOGRAPHIC INFORMATION FILE (CIF)

cell, but it should be emphasized from a computer-programming
viewpoint that this is coincidental; the attributes that constrain
the value of this data item (and its relationship to others such as
_atom_site_fract_y and _atom_site_fract_z) must be obtained
from the dictionary and not otherwise inferred.

(8) Comment: In practice data names described in a DDL2 dic-
tionary are constructed with a period character separating their
specific function from the name of the category to which they
have been assigned. In the absence of a dictionary file, this
convention permits the inference that the data item with name
_atom_site.fract_x will appear in the same looped list as other
items with names beginning _atom_site., and that all such items
belong to the same category.

2.2.7.4.5. Name space

(9) The intention of the maintainers of public CIF dictionaries
is to formulate a single authoritative set of data names for each CIF
dialect (i.e. DDL1 and DDL2), thus facilitating the reliable archive
and interchange of crystallographic data. However, it is also per-
missible for users to introduce local data names into a CIF. Two
mechanisms exist to reduce the danger of collision of data names
that are not incorporated into public dictionaries.

(10) The character string [local] (including the literal bracket
characters) is reserved for local use. That is, no public dictionary
will define a data name that includes this string. This allows exper-
imentation with data items in a strictly local context, i.e. in cases
where the CIF is not intended for interchange with any other user.

(11) Where CIFs including local data items are expected to
enjoy a public circulation, authors may register a reserved pre-
fix for their sole use. The registry is available on the web at
http://www.iucr.org/iucr-top/cif/spec/reserved.html.

A reserved prefix, e.g. foo, must be used in the following ways:
(i) If the data file contains items defined in a DDL1 dictionary,

the local data names assigned under the reserved prefix must con-
tain it as their first component, e.g. _foo_atom_site_my_item.

(ii) If the data file contains items defined in a DDL2 dictionary,
then the reserved prefix must be:

(a) the first component of data names in a category defined
for local use, e.g. _foo_my_category.my_item.

(b) the first component following the period character in a
data name describing a new item in a category already
defined in a public dictionary, e.g. _atom_site.foo_

my_item.
(12) There is no syntactic property identifying such a reserved

prefix, so that software validating or otherwise handling such local
data names must scan the entire registry and match registered pre-
fixes against the indicated components of data names. Note that
reserved prefixes may not themselves contain underscore charac-
ters.

2.2.7.4.6. Note on handling of units

(13) The published specification for CIF version 1.0 permitted
data values expressed in different units to be tagged by variant data
names (Hall et al., 1991, p. 657):

. . . Many numeric fields contain data for which the units must be
known. Each CIF data item has a default units code which is stated
in the CIF Dictionary. If a data item is not stored in the default units,
the units code is appended to the data name. For example, the default
units for a crystal cell dimension are ångströms. If it is necessary to
include this data item in a CIF with the units of picometres, the data
name of _cell_length_a is replaced by _cell_length_a_pm.
Only those units defined in the CIF Dictionary are acceptable. The

default units, except for the ångström, conform to the SI Standard
adopted by the IUCr.

This approach is deprecated and has not been supported by
any official CIF dictionary published subsequent to version 1.0
of the core. All data values must be expressed in the single unit
assigned in the associated dictionary.

A small number of archived CIFs exist with variant data names
as permitted by the above clause. If it is necessary to vali-
date them against versions of the core dictionary subsequent to
version 1.0, the formal compatibility dictionary cif compat.dic
(ftp://ftp.iucr.org/cifdics/cif compat.dic) may be used for the pur-
pose. No other use should be made of this dictionary.

2.2.7.4.7. Data-value semantics

(14) The STAR syntax permits retrieval of data by simply
requesting a specific data name within a specific data block. Prior
knowledge about data type (e.g. text or numbers), whether the item
is looped or whether the item exists in the file at all is unnecessary.
However, applications in general need to know data type, valid
ranges of values and relationships between data items, and a pro-
gram designer needs to know the purpose of the data item (i.e. what
physical quantity or internal book-keeping function it represents).
While such semantic information may be defined informally for
local data items (ones not intended for exchange between different
users or software applications), formal descriptions of the seman-
tics associated with data values are catalogued in data dictionary
files. Currently two formalisms (dictionary definition languages)
for describing data-value attributes are supported; full specifica-
tions of these formalisms (known as DDL1 and DDL2) are pro-
vided in Chapters 2.5 and 2.6.

2.2.7.4.7.1. Data typing

(15) Four base data types are supported in CIF. These are:
(i) numb: a value interpretable as a decimal base number and

supplied as an integer, a floating-point number or in scientific nota-
tion;

(ii) char: a value to be interpreted as character or text data
(where the value contains white-space characters, it must be
quoted);

(iii) uchar: a value to be interpreted as character or text data but
in a case-insensitive manner (i.e. the values FOO and foo are to be
taken as identical);

(iv) null: a special data type associated with items for which no
definite value may be stored in computer memory. It is the type
associated with the special character literal values ? (query mark)
and . (full point), which may appear as values for any data item
within a data file (see Section 2.2.7.4.8 below). It is also the type
assigned to items defined in dictionary files that may not occur in
data files.

(16) Comment: Many applications distinguish between multi-
line text fields and character-string values that fit within a single
line of text. While this is a convenient practical distinction for
coding purposes, formally both manifestations should be regarded
as having the same base type, which might be ‘char’ or ‘uchar’.
Applications are at liberty to choose whether to define specific
multi-line text subtypes, and whether to permit casting between
subtypes of a base type. The examples of character-string delim-
iters in Section 2.2.7.1.4(20) are predicated on an approach that
handles all subtypes of character or text data equivalently.

(17) Where the attributes of a data value are not available in a
dictionary listing, it may be assumed that a character string inter-

33

International Tables for Crystallography (2006). Vol. G, Section 2.2.7.4.7, pp. 33–34.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch2o2v0001/sec2o2o7o4o7/

2. CONCEPTS AND SPECIFICATIONS

pretable as a number should be taken to represent an item of type
‘numb’. However, an explicit dictionary declaration of type will
override such an assumption.

2.2.7.4.7.2. Subtyping

(18) The base data types detailed in the previous section are
very general and need to be refined for practical application.
Refinement of types is to some extent application-dependent, and
different subtypes are supported for data items defined by DDL1
and DDL2 dictionary files. The following notes indicate some con-
siderations, but the relevant dictionary files and documentation
should be consulted in each case.

(19) DDL1 dictionaries. Values of type ‘numb’ may include a
standard uncertainty in the final digit(s) of the number where the
associated item definition includes the attribute

_type_conditions esd

(or _type_conditions su, a synonym introduced to DDL1 in
2005). For example, a value of 34.5(12) means 34.5 with a stan-
dard uncertainty of 1.2; it may also be expressed in scientific nota-
tion as 3.45E1(12).

(20) DDL2 dictionaries. DDL2 provides a number of tags that
may be used in a dictionary file to specify subtypes for data items
defined by that dictionary alone. Examples of the subtypes speci-
fied for the macromolecular CIF dictionary are:

code identifying code strings or single words
ucode identifying code strings or single words (case-insensitive)
uchar1 single-character codes (case-insensitive)
uchar3 three-character codes (case-insensitive)
line character strings forming a single line of text
uline character strings forming a single line of text (case-insensitive)
text multi-line text
int integers
float floating-point real numbers
yyyy-mm-dd dates
symop symmetry operations
any any type permitted

2.2.7.4.8. Special generic values

(21) The unquoted character literals ? (query mark) and . (full
point) are special and are valid expressions for any data type.

(22) The value ? means that the actual value of a requested data
item is unknown.

(23) The value . means that the actual value of a requested data
item is inapplicable. This is most commonly used in a looped list
where a data value is required for syntactic integrity.

2.2.7.4.9. Embedded data semantics

(24) The attributes of data items defined in CIF dictionaries
serve to direct crystallographic applications in the retrieval, storage
and validation of relevant data. In principle, a CIF might include
as data items suitably encoded fields representing data suitable for
manipulation by text processing, image, spreadsheet, database or
other applications. It would be useful to have a formal mechanism
allowing a CIF to invoke appropriate content handlers for such data
fields; this is under investigation for the next CIF version specifi-
cation.

2.2.7.4.10. CIF conventions for special characters in text

(25) The one existing example of embedded semantics is the
text character markup introduced in the CIF version 1.0 specifica-
tion and summarized in paragraphs (30)–(37) below. The specifi-
cation is silent on which fields should be interpreted according to

these markup conventions, but the published examples suggest that
they may be used in any character field in a CIF data file except as
prohibited by a dictionary directive. It is intended that the next CIF
version specification shall formally declare where such markup
may be used.

2.2.7.4.11. Handling of long lines

(26) The restriction in line length within CIF requires tech-
niques to handle without semantic loss the content of lines of
text exceeding the limit (2048 characters in this revision, 80 char-
acters in the initial CIF specification). The line-folding protocol
defined here provides a general mechanism for wrapping lines of
text within CIFs to any extent within the overall line-length limit.
A specific application where this would be useful is the conversion
of lines longer than 80 characters to the CIF version 1.0 limit. This
80-character limit is used in the examples below for illustrative
purposes.

These techniques are applied only to the contents of text fields
and to comments.

In order to permit such folding, a special semantics is defined
for use of the backslash. It is important to understand that this does
not change the syntax of CIF version 1.0. All existing CIFs con-
forming to the CIF version 1.0 specification can be viewed as hav-
ing exactly the same semantics as they now have. Use of these
transformational semantics is optional, but recommended.

In order to avoid confusion between CIFs that have undergone
these transformations and those that have not, the special com-
ment beginning with a hash mark immediately followed by a back-
slash (#\) as the last non-blank characters on a line is reserved to
mark the beginning of comments created by folding long-line com-
ments, and the special text field beginning with the sequence line
termination, semicolon, backslash (<eol>;\) as the only non-blank
characters on a line is reserved to mark the beginning of text fields
created by folding long-line text fields.

The backslash character is used to fold long lines in character
strings and comments. Consider a comment which extends beyond
column 80. In order to provide a comment with the same meaning
which can be fitted into 80-character lines, prefix the comment
with the special comment consisting of a hash mark followed by
a backslash (#\) and the line terminator. Then on new lines take
appropriate fragments of the original comment, beginning each
fragment with a hash mark and ending all but the last fragment
with a backslash. In doing this conversion, check for an original
line that ends with a backslash followed only by blanks or tabs.
To preserve that backslash in the conversion, add another back-
slash after it. If the next lexical token (not counting blanks or tabs)
is another comment, to avoid fusing this comment with the next
comment, be sure to insert a line with just a hash mark.

Similarly, for a character string that extends beyond column 80,
(i) first convert it to be a text field delimited by line termination–

semicolon (<eol>;) sequences,
(ii) then change the initial line termination–semicolon (<eol>;)

sequence to line termination–semicolon–backslash–line termina-
tion (<eol>;\<eol>),

(iii) and break all subsequent lines that do not fit within 80
columns with a trailing backslash. In the course of doing the trans-
lation,

(a) check for any original text lines that end with a backslash
followed only by blanks or tabs;

(b) to preserve that backslash in the conversion, add another
backslash after it, and then an empty line.

(More formally, the line folding should be done separately and
directly on single-line non-semicolon-delimited character strings

34 references

http://it.iucr.org/Ga/ch2o2v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

