
2.3. Specification of the Crystallographic Binary File (CBF/imgCIF)

BY H. J. BERNSTEIN AND A. P. HAMMERSLEY

2.3.1. Introduction

The Crystallographic Binary File (CBF) format is a comple-
mentary format to the Crystallographic Information File (CIF)
(Hall et al., 1991) supporting efficient storage of large quanti-
ties of experimental data in a self-describing binary format. The
image-supporting Crystallographic Information File (imgCIF) is
an extension to CIF to assist in ASCII debugging and archiving of
CBF files and to allow for convenient and standardized inclusion
of images, such as maps, diagrams and molecular drawings, into
CIFs for publication. The binary CBF format is useful for han-
dling large images within laboratories and for interchange among
collaborating groups. For smaller blocks of binary data, either for-
mat should be suitable. The ASCII imgCIF format is appropriate
for interchange of smaller images and for long-term archiving.

CBF is designed to support efficient storage of raw experimen-
tal data (images) from area detectors with no loss of information,
unlike some existing formats intended for this purpose. The format
enables very efficient reading and writing of raw data, and encour-
ages economical use of disk space. It may be coded easily and is
portable across platforms. It is also flexible and extensible so that
new data structures can be added without affecting the present def-
initions.

These goals are achieved by a simple file format, combining a
CIF-like file header with compressed binary information. The file
header consists of ASCII text giving information about the binary
data as CIF tag–value pairs and tables. Each binary image is pre-
sented as a text-field value, either as raw octets of binary data
in a CBF data set, or as an ASCII-based encoding of the same
binary information in a true ASCII imgCIF data set. The ASCII-
based encoded format uses e-mail MIME (Multipurpose Internet
Mail Extensions) conventions to encode the binary data (Freed
& Borenstein, 1996a,b,c; Freed et al., 1996; Moore, 1996). The
present version of the format tries to deal only with simple Carte-
sian data. These are essentially the ‘raw’ diffraction data that typi-
cally are stored in commercial formats or individual formats inter-
nal to particular institutes. Other forms of binary image data could
be accommodated. It is hoped that CBF will replace individual
laboratory or institute formats for ‘home-built’ detector systems,
will be used as an inter-program data-exchange format, and will
be offered as an output choice by commercial detector manufactur-
ers specializing in X-ray and other detector systems. In this chap-
ter we discuss the basic framework within which binary data and
images are stored. The categories and data items that are used to
describe beam and equipment axes, rastering methodologies, and
image compression techniques are described in Chapter 3.7. The
CBF/imgCIF dictionary is given in Chapter 4.6. An application
programming interface (API) for the manipulation of image data
is described in Chapter 5.6.

Affiliations: HERBERT J. BERNSTEIN, Department of Mathematics and Computer
Science, Kramer Science Center, Dowling College, Idle Hour Blvd, Oakdale, NY
11769, USA; ANDREW P. HAMMERSLEY, ESRF/EMBL Grenoble, 6 rue Jules
Horowitz, France.

2.3.2. CBF and imgCIF

CBF and imgCIF are two aspects of the same format. Since CIFs
are pure ASCII text files, it was necessary to define a separate
binary format to allow the combination of pseudo-ASCII sec-
tions and binary data sections. In the binary-file CBF format, the
ASCII sections conform closely to the CIF standard but must use
operating-system-independent ‘line separators’. In order to facili-
tate interchange of files, an API that writes CBF files should use
\r\n (carriage return, line feed) for the line separator. Use of this
line separator allows the ASCII sections to be viewed with stan-
dard system utilities (e.g. ‘more’, ‘pg’) on a very wide range of
operating systems (e.g. Unix, MacOS and Windows). However, an
API that reads CBF format must accept any of the following three
alternative line terminators as the end of an ASCII line: \r, \n
or \r\n. As for all CIF data sets, an imgCIF file conforms to the
normal text file-writing conventions of the system on which it is
written. imgCIF is also one of the two names of the CIF dictio-
nary (see Chapter 4.6) that contains the terms specific to describ-
ing image data in both CBF and imgCIF data sets. Thus a CBF or
imgCIF data set uses data names from the CBF/imgCIF dictionary
and other CIF dictionaries.

The general structure of a CBF or imgCIF data set is shown in
Example 2.3.2.1. After a special comment to identify the file type
(a so-called ‘magic number’) and any other initial comments, the
data set begins with a ‘data_blockname’ which gives the name
of the data block. Tags and values that describe the image data and
how they were collected come next. For efficiency in processing, it
is recommended that all the descriptive tags come before the actual
image data. This recommendation is a requirement for the binary
CBF format. It is optional for the ASCII imgCIF format. The
image data are given as the value of the tag _array_data.data.
The image data are given in a text field, using MIME conventions
to describe the encoding.

2.3.2.1. A simple example

Before describing the format in full, we start by showing a sim-
ple but important and complete use of the format: that of storing
a single detector image in a file together with a small amount of
auxiliary information. This is intended to be a useful example that
can be understood without reference to the full definitions. It also
serves as an introduction or overview of the format definition. This
example uses CIF DDL2-based dictionary items (see Chapter 2.6).

Example 2.3.2.2 relates to an image of 768 × 512 pixels stored
as 16-bit unsigned integers, in little-endian byte order (this is the
native byte ordering on a PC). The pixel sizes are 100.5 × 99.5 µm.

The example will be presented and discussed in three sections.
The circled numerals (e.g. 1©) are included to allow us to comment
on portions of the example. They are not part of the CBF/imgCIF
format.

The line marked by 1©, starting with a hash character (#), is a
CIF and CBF comment line. As a first line, the pattern of three
hashes followed by ‘CBF’ helps to identify the data set as a CBF.
It is a so-called ‘magic number’. The text ###CBF: VERSION must
be present as the very first line of every CBF file. Following

37

International Tables for Crystallography (2006). Vol. G, Section 2.3.2, pp. 37–39.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch2o3v0001/sec2o3o2/

2. CONCEPTS AND SPECIFICATIONS

Example 2.3.2.1. General structure of a CBF or imgCIF data set.
The critical values that define an image are marked with .

###CBF: VERSION 1.0
data_blockname

cif tags and values describing the image, e.g.
loop_
_array_intensities.array_id
_array_intensities.binary_id
_array_intensities.linearity
_array_intensities.undefined_value
_array_intensities.overload

image_1 1 linear 0 65535

the image data are given as the value of
the tag _array_data.data, usually in a loop_
at the end of the data block. The first two
values identify the structure of the image
and assure a unique identifier if there are
multiple images of the same structure.

loop_
_array_data.array_id
_array_data.binary_id
_array_data.data

image_1
1

The image itself begins and ends as a CIF
text field, within which MIME conventions
are used to describe the encoding of the image

;
--CIF-BINARY-FORMAT-SECTION--
Content-Type: application/octet-stream;

conversions="x-CBF_PACKED"
Content-Transfer-Encoding: BINARY
X-Binary-Size: 374578
X-Binary-ID: 1
X-Binary-Element-Type: "unsigned 16-bit integer"
Content-MD5: jGmkxkrpnizOetd9T/Np4NufAmA==

START_OF_BIN
*************<D5>9*****<D4>********* ...
[This is where the raw binary data would be – we can’t print them here]
--CIF-BINARY-FORMAT-SECTION----
;

‘VERSION’ is the number of the corresponding version of the
CBF/imgCIF extension dictionary and supporting documentation.
Comment lines and white space (blanks and newlines) may appear
anywhere outside the binary sections. In an imgCIF data set, the
descriptive tags and values may be presented in any convenient
order, e.g. the data could come first and the parameters necessary
to interpret the data could come later. This order-independent con-
vention holds for an imgCIF file, but for a CBF all the tags and
values describing binary data (i.e. all the tags other than those in
the ARRAY_DATA category) should be presented before the binary
data, in the form of a header. This does not mean that there cannot
be more useful information after the binary data. There could be
another full header and more blocks of binary data. In the interest
of efficiency in processing a CBF, the parameters that relate to a
particular block of binary data must appear earlier in the CBF than
the block itself.

The header begins at the line marked with 2©. The data_ token
is the CIF token for identifying a data block. The name of the
data block, image_1, follows immediately without any intervening
white space. The name of the data block is arbitrary. Within a data
block any given tag may be presented only once, either directly
with a value following immediately, or as one of the column head-
ings for the rows of a table. To reuse the same tag one must start a
new data block.

Example 2.3.2.2. A single image.

###CBF: VERSION 1.0 1©
data_image_1 2©

_entry.id ’image_1’ 3©
_chemical.entry_id ’image_1’
_chemical.name_common ’Protein X’

Experimental details
_exptl_crystal.id ’CX-1A’ 4©
_exptl_crystal.colour ’pale yellow’

_diffrn.id DS1
_diffrn.crystal_id ’CX-1A’

_diffrn_measurement.diffrn_id DS1
_diffrn_measurement.method Oscillation
_diffrn_radiation_wavelength.id L1
_diffrn_radiation_wavelength.wavelength

0.7653
_diffrn_radiation_wavelength.wt 1.0

_diffrn_radiation.diffrn_id DS1
_diffrn_radiation.wavelength_id L1

_diffrn_source.diffrn_id DS1
_diffrn_source.source synchrotron
_diffrn_source.type ’ESRF BM-14’

_diffrn_detector.diffrn_id DS1
_diffrn_detector.id ESRFCCD1
_diffrn_detector.detector CCD
_diffrn_detector.type ’ESRF Be XRII/CCD’

_diffrn_detector_element.id 1
_diffrn_detector_element.detector_id ESRFCCD1

_diffrn_frame_data.id F1
_diffrn_frame_data.detector_element_id 1
_diffrn_frame_data.array_id ’image_1’
_diffrn_frame_data.binary_id 1

Information about the image begins at the line marked with 3©.
In the following lines, the apostrophes enclose strings that con-
tain a space. Values that contain white space, or that could be con-
fused with a CIF token, must always be quoted. A double quote (")
could have been used. There is a third way to quote a string, with
the string \r\n;, i.e. with a semicolon at the beginning of a line,
which allows multi-line strings to be presented. We shall use this
form of text quotation for the binary data.

The experimental details begin at the line marked with 4©. Many
more data items could be defined, but here we are giving an exam-
ple of one useful minimal (but not mandatory) set. See the imgCIF
dictionary in Chapter 4.6 and the classification of image data in
Chapter 3.7 for a discussion of which items are mandatory.

After describing the parameters of the experiment, we describe
the organization of the image data (Example 2.3.2.3).

Note that we have changed from listing a value directly with
each tag to a tabular format, using the CIF loop_ token.

The *.array_id tags identify data items belonging to the
same array. Here we have chosen the name image_1, but another
name could have been used, as long as it is used consistently.
The *.index tags refer to the dimension being defined, and the
*.dimension column defines the number of elements in that
dimension. The *.precedence tag defines the precedence of raster-
ing of the data. In this case, the first dimension is the faster chang-
ing dimension. The *.direction column tells us the direction in
which the data raster runs within a dimension. Here the data raster
runs from the minimum element towards the maximum element
(‘increasing’) in the first dimension, and from the maximum ele-
ment towards the minimum element in the second dimension. This
is the default rastering order.

38

2.3. SPECIFICATION OF THE CRYSTALLOGRAPHIC BINARY FILE (CBF/imgCIF)

Example 2.3.2.3. Organization of image data in a CBF/imgCIF.

Define image storage mechanism
loop_
_array_structure.id
_array_structure.encoding_type
_array_structure.compression_type
_array_structure.byte_order
image_1 "unsigned 16-bit integer" none
little_endian

loop_
_array_intensities.array_id
_array_intensities.binary_id
_array_intensities.linearity
_array_intensities.undefined_value
_array_intensities.overload
image_1 1 linear 0 65535

loop_
_array_structure_list.array_id
_array_structure_list.index
_array_structure_list.dimension
_array_structure_list.precedence
_array_structure_list.direction
image_1 1 768 1 increasing
image_1 2 512 2 decreasing

loop_
_array_element_size.array_id
_array_element_size.index
_array_element_size.size
image_1 1 100.5e-6
image_1 2 99.5e-6

We have given the abstract ordering of the data. The physical
view of data is described in detail in the CBF/imgCIF dictionary
(Chapters 3.7 and 4.6).

In general, the physical sense of the image is from the sample to
the detector.

The storage of the binary data is now fully defined. Further data
items could be defined, but we are ready to present the image data
(Example 2.3.2.4). This is done with the ARRAY_DATA category.
The actual binary data will come just a little further down, as the
essential part of the value of _array_data.data, which begins as
semicolon-quoted text.

The line immediately after the line with the semicolon is a
MIME boundary marker. As with all MIME boundary markers,
it begins with ‘--’ (two hyphens). The next few lines are MIME
headers, describing some useful information we will need in order
to process the binary section. MIME headers can appear in dif-
ferent orders and can be very confusing (look at the raw contents
of an e-mail message with attachments), but there are only a few
headers that have to be understood to process a CBF.

The ‘Content-Type’ header serves to describe the nature of the
following data sufficiently to allow an association with an appro-
priate agent or mechanism for presenting the data to a user. It
may be any of the discrete types permitted in RFC 2045 (Freed
& Borenstein, 1996b), but, unless the binary data conform to
an existing standard format (e.g. TIFF or JPEG), the descrip-
tion ‘application/octet-stream’ is recommended. If the octet stream
has been compressed, the compression should be specified by the
parameter conversions="x-CBF_PACKED" or by specifying one of
the other compression types allowed as described in Chapter 5.6.

The ‘Content-Transfer-Encoding’ header describes any encod-
ing scheme applied to the data, most commonly to transform it
to an ASCII-only representation. For a CBF the value should be
‘BINARY’. We consider the other values used for imgCIF below.

The ‘X-Binary-Size’ header specifies the size of the binary
data in octets. Calculation of the size where compression is used

Example 2.3.2.4. Representation of the binary data.

loop_
_array_data.array_id
_array_data.binary_id
_array_data.data

image_1 1
;
--CIF-BINARY-FORMAT-SECTION--
Content-Type: application/octet-stream;

conversions="x-CBF_PACKED"
Content-Transfer-Encoding: BINARY
X-Binary-Size: 374578
X-Binary-ID: 1
X-Binary-Element-Type: "unsigned 16-bit integer"
Content-MD5: jGmkxkrpnizOetd9T/Np4NufAmA==

START_OF_BIN
************<D5>9******<D4>********* ...
[This is where the raw binary data would be – we can’t print them here]
--CIF-BINARY-FORMAT-SECTION----
;

is described in Section 2.3.3.3. The ‘X-Binary-Element-Type’
header specifies the type of binary data in the octets, using the
same descriptive phrases as in _array_structure.encoding_type

(the default value is ‘unsigned 32-bit integer’).
The other MIME headers in the example provide an identifier

and a content checksum. The MIME header items are followed
by an empty line and then by a special sequence (marked here as
START_OF_BIN), consisting of the single characters Ctrl-L, Ctrl-Z,
Ctrl-D and a single binary flag character of hexadecimal value D5
(213 decimal). The binary data follow immediately after this flag
character. The reasons for choosing this sequence are discussed in
Section 2.3.3.3.

After the last octet (i.e. byte) of the binary data, there is a spe-
cial trailer \r\n--CIF-BINARY-FORMAT-SECTION----\r\n;. This
repeats the initial boundary marker with an extra -- at the end
(a MIME convention for the last boundary marker), followed by a
closing semicolon quote for a text section. This is essential in an
imgCIF, and we include it in a CBF for consistency.

2.3.3. Overview of the format

This section describes the major elements of the CBF format.
(1) CBF is a binary file, containing self-describing array data,

e.g. one or more images, and auxiliary data, e.g. describing the
experiment.

(2) Apart from the handling of line terminators, the way binary
data are presented and more liberal rules for ordering information,
an ASCII imgCIF file is the same as a CBF binary file.

(3) A CBF consists of pseudo-ASCII text header sections con-
sisting of ‘lines’ of no more than 80 ASCII characters separated by
‘line separators’, which are the pair of ASCII characters carriage
return (\r, ASCII 13) and line feed (\n, ASCII 10), followed by
zero, one or more binary sections presented as ‘binary strings’. The
file returns to the pseudo-ASCII format after each string, allowing
additional binary strings to appear later in the file after additional
headers.

(4) An imgCIF consists of ASCII lines of no more than 80 char-
acters using the the normal line-termination conventions of the cur-
rent system (e.g. \n in UNIX) with MIME-encoded binary strings
at any appropriate point in the file. (For both CBF and imgCIF, the
limitation of 80 characters per line will be increased to 2048 as
CIF 1.1 is adopted.)

39 references

http://it.iucr.org/Ga/ch2o3v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

