
2. CONCEPTS AND SPECIFICATIONS

reference is provided as a convenience to avoid the redeclaration
of the full data-type specification for each data item. The key item
for this category is _item_type.name, which is defined in the par-
ent category ITEM. Only one data type may be specified for a data
item.

2.6.6.1.16. ITEM TYPE CONDITIONS

The category ITEM_TYPE_CONDITIONS defines special condi-
tions applied to a data-item type. This category has been included
in order to comply with previous applications of STAR and CIF.
Since the constructions that are embodied in this category are anti-
thetical to the data model that underlies DDL2, it is recommended
that this category only be used for the purpose of parsing existing
data files and dictionaries.

2.6.6.1.17. ITEM TYPE LIST

The ITEM_TYPE_LIST category holds the list of item data-
type definitions. The key item in this category is _item_type_

list.code. Data types are associated with data items by refer-
ences to this key from the ITEM_TYPE category. One of the data-
type codes defined in this category must be assigned to each data
item.

The definition of a data type consists of the specification of
the item’s primitive type and a regular expression that defines
the pattern that must be matched by any occurrence of the item.
The primitive type code, _item_type_list.primitive_code, can
assume values of char, uchar, numb and null. This code
is provided for backward compatibility with STAR and CIF
applications that employ loose data typing. The data item
_item_type_list.construct holds the regular expression that
must be matched by the data type. Simple regular expressions can
be used to define character fields of restricted width, floating-point
and integer formats.

Molecular Information File (MIF) applications (Allen et al.,
1995) have extended the notion of the regular expression to include
data-item components. This permits the construction of complex
data items from one or more component data items using reg-
ular expression algebra. These extended regular expressions are
defined in the category ITEM_TYPE_CONDITIONS.

Example 2.6.6.1 illustrates the data types that are defined within
this DDL. The DDL uses a number of character data types which
have subtly different definitions. For instance, the data type iden-
tified as code defines a single-word character string; char extends
the code type with the addition of a white-space character; and
text extends the char type with the addition of a newline charac-
ter. Two special character data types name and idname are used to
define the full STAR data name and the STAR name components,
respectively. The data type any is used to match any potential data
type. This type is used for data items that may hold a variety of
data types. The data type int is defined as one or more decimal
digits and the yyyy-mm-dd type defines a date string.

2.6.6.1.18. ITEM UNITS

The ITEM_UNITS category holds a code that identifies the sys-
tem of units in which a data item is expressed. The data item
_item_units.code is a child of the item _item_units_list.code.
Unit definitions are actually made in the ITEM_UNITS_LIST par-
ent category. The item _item_units.code provides an indi-
rect reference into the list of data-type definitions in category
ITEM_UNITS_LIST. This indirect reference is provided as a con-
venience to avoid the redeclaration of the full data-type spec-
ification for each data item. The key item for this category is

Example 2.6.6.1. The description of permitted data types in the
DDL2 dictionary.

DATA TYPE CONVERSION TABLE

#

loop_
_item_type_list.code
_item_type_list.primitive_code
_item_type_list.detail
_item_type_list.construct

code char ’A single word’ ’[ˆ\t\n "]*’
char char ’A single line of text’ ’[ˆ\n]*’
text char ’Text which may span lines’ ’.*’
int numb ’Unsigned integer data’ ’[0-9]+’
name uchar ’A data item name’

’_[_A-Za-z0-9]+[.][][_A-Za-z0-9%/-]+’

idname uchar
’A data item name component or identifier’

’[_A-Za-z0-9]+’
any char ’Any data type’ ’.*’
yyyy-mm-dd

char ’A date format’
’[0-9][0-9][0-9][0-9]-[0-9]?[0-9]-[0-9][0-9]’

_item_units.name, which is defined in the parent category ITEM.
Only one type of unit may be specified for a data item.

2.6.6.1.19. ITEM UNITS CONVERSION

The ITEM_UNITS_CONVERSION category holds a table of
conversion factors between the systems of units described
in the ITEM_UNITS_LIST category. The systems of units are
identified by a *.from_code and a *.to_code, which are
both children of the item _item_units_list.code. The con-
version is defined in terms of an arithmetic operator and
a conversion factor, _item_units_conversion.operator and
_item_units_conversion.factor, respectively.

2.6.6.1.20. ITEM UNITS LIST

The ITEM_UNITS_LIST category holds the descriptions of sys-
tems of physical units. The key item in this category is
_item_units_list.code. Units are assigned to data items by ref-
erences to this key from the ITEM_UNITS category.

2.6.6.2. DDL2 definitions describing categories

In this section, the DDL definitions that describe the proper-
ties of categories, category groups and subcategories are presented.
Fig. 2.6.4.2 illustrates the organization of these categories.

2.6.6.2.1. CATEGORY

The category named CATEGORY contains the data items that
describe the properties of collections of related data items.
A DDL category is essentially a table. In this category the
characteristics of the table as a whole are defined. This cate-
gory includes the data items _category.id to identify a cat-
egory name; _category.description to describe a category;
_category.mandatory_code to indicate whether the category
must appear in a data block; and _category.implicit_key, which
can be used to merge like categories between data blocks. The cat-
egory identifier _category.id is a component of the key in most
of the DDL categories in this section. The parent definition of the
category identifier and all its child relationships are defined in this
category.

68

International Tables for Crystallography (2006). Vol. G, Section 2.6.6.2, pp. 68–70.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch2o6v0001/sec2o6o6o2/

2.6. SPECIFICATION OF A RELATIONAL DICTIONARY DEFINITION LANGUAGE (DDL2)

Because special rules exist in the STAR grammar for the speci-
fication of data items that belong to a common category, the orga-
nization of data items within categories has a significant influence
on how these items may be expressed in a data file. For example,
a data category may be specified only once within a STAR data
block or save frame, and at any level of a STAR loop structure
only data items of a common category may appear.

2.6.6.2.2. CATEGORY EXAMPLES

The category named CATEGORY_EXAMPLES holds examples
that apply to an entire category. This typically includes a com-
plete specification of the category with annotations. An exam-
ple specification consists of the text of the example, _category_
examples.case, and an optional comment item, _category_

examples.detail, which can be used to qualify the example. The
key for this category includes the items _category_examples.id

and _category_examples.case. The former is completely defined
in the parent category named CATEGORY.

2.6.6.2.3. CATEGORY GROUP

The category CATEGORY_GROUP names the category groups
to which a category belongs. The assignment of a category
to a category group is made when the category is defined.
Each category group that is specified in this category must
also be defined in the parent category, CATEGORY_GROUP_LIST.
The basis for this category also includes the category identifier
_category_group.category_id, which is completely defined in
the parent category named CATEGORY.

2.6.6.2.4. CATEGORY GROUP LIST

The DDL category CATEGORY_GROUP_LIST holds data items
that define category groups. Category groups are collections of
related categories. Parent–child relationships may be defined for
these groups. The specification of category groups and the rela-
tionships between these groups allow a complicated collection of
categories to be organized into a hierarchy of more relevant groups.
This higher level of structure is essential for large application dic-
tionaries that may contain hundreds of category definitions.

The category CATEGORY_GROUP_LIST holds the description
of each category group, _category_group_list.description,
and an optional identifier of the parent group,
_category_group_list.parent_id. Category groups can be
formed from collections of base categories, those categories that
hold data. Category groups can also be formed from collections of
base categories and category groups.

Example 2.6.6.2 illustrates the category groups that are defined
in this DDL. These include the group of categories that define cat-
egories, the group of categories defining data items and the group
of categories that define properties of the dictionary. An additional
compliance group is also defined for categories that are included
specifically for compliance with previous versions of DDL. Each
of these category groups is defined as a child of the group named
ddl_group to which all of the base DDL categories belong.

2.6.6.2.5. CATEGORY KEY

The category CATEGORY_KEY identifies the data items within a
category that form the basis for the category. The category basis
uniquely identifies each group or tuple of items in the category. In
the analogy of the category as a table, no row in a table may have
duplicate values for its key data items.

Example 2.6.6.2. Category groups defined in the DDL2 dictio-
nary.

loop_
_category_group_list.id
_category_group_list.parent_id
_category_group_list.description

’ddl_group’ .
;

Component categories of the macromolecular DDL.
;

’datablock_group’ ’ddl_group’
;

Categories that describe the characteristics of
data blocks.

;
’category_group’ ’ddl_group’

;
Categories that describe the characteristics of
categories.

;
’sub_category_group’ ’ddl_group’

;
Categories that describe the characteristics of
subcategories.

;
’item_group’ ’ddl_group’

;
Categories that describe the characteristics of
data items.

;
’dictionary_group’ ’ddl_group’

;
Categories that describe the dictionary.

;
’compliance_group’ ’ddl_group’

;
Categories that are retained specifically for
compliance with older versions of the DDL.

;

The choice of basis has important consequences in the specifi-
cation of a category. It is important to ensure that the key items
that form the category basis can unambiguously identify any tuple
of data items within the category. If this is not the case, then it may
not be possible to reliably recover data items that are stored in the
category. Because key items are required to address each tuple of
items in a category, key items are considered mandatory items in
the category.

It is interesting to note how the key data items have been
selected for the categories that define the DDL, and how this
choice of key items influences the structure of the DDL dictio-
nary. In the DDL category CATEGORY_KEY, the basis includes both
the identifier for the category, _category_key.id, and the name
of the key data item, _category_key.name. This choice of basis
allows for any unique groups of items in a category to be defined as
key items. Duplicate key-item values within a category are forbid-
den by the data model. In the DDL category ITEM_TYPE, the basis
includes only the identifier for the item name, _item_type.name.
This choice of basis has the desired effect of limiting the specifi-
cation of item data type, _item_type.code, to a single choice for
each data item.

2.6.6.2.6. CATEGORY METHODS

The CATEGORY_METHODS category is used to associate method
identifiers with categories. Any number of unique method iden-
tifiers may be associated with a category. The method identifiers
reference the full method definitions in the parent METHOD_LIST

category.

69

2. CONCEPTS AND SPECIFICATIONS

2.6.6.2.7. SUB CATEGORY

The category SUB_CATEGORY provides data items to describe
a subcategory and to associate a procedure with the subcategory
(see Section 2.6.6.2.9). A subcategory is a set of data items within
a category that have a particular association. A typical example
would be a triad of positional coordinates x, y, z that are collec-
tively assigned to a ‘cartesian’ subcategory.

2.6.6.2.8. SUB CATEGORY EXAMPLES

The DDL category SUB_CATEGORY_EXAMPLES holds exam-
ples of a subcategory. A subcategory example might illus-
trate valid instances of the items comprising the subcate-
gory. An example specification contains the text of the exam-
ple, _sub_category_examples.case, and an optional comment
item, _sub_category_examples.detail, that can be used to
qualify the example. The key for this category includes
the items _sub_category_examples.id and _sub_category_

examples.case. This compound basis permits multiple unique
examples to be provided for each subcategory.

2.6.6.2.9. SUB CATEGORY METHODS

The SUB_CATEGORY_METHODS category is used to associate
method identifiers with subcategories. Any number of unique
method identifiers may be associated with a subcategory. The
method identifiers reference the full method definitions in the par-
ent METHOD_LIST category.

The procedure that is identified as _sub_category_methods.

method_id may be used to validate the subcategory identified as
_sub_category_methods.sub_category_id. Subcategory valida-
tion may be required in instances where conditions are placed
on the values of data items within the subcategory that are more
restrictive than those associated with each component data item.
A simple example of such a restriction would be a normalization
restriction on the components of a subcategory. Any procedure
referenced in this category must also be defined in the category
METHOD_LIST.

2.6.6.3. DDL2 definitions describing methods

In this section, the DDL categories that define the methods asso-
ciated with data blocks, categories, subcategories and items are
presented. Figs. 2.6.4.1, 2.6.4.2 and 2.6.4.3 illustrate the relation-
ships between the method categories and other DDL categories.

2.6.6.3.1. METHOD LIST

The METHOD_LIST category defines methods that can be asso-
ciated with data blocks, categories, subcategories and items.
This category attempts to capture only the essential informa-
tion required to define these methods, without defining any
implementation details. The implementation details are appro-
priately left to application-dictionary developers. It is assumed
here that, within a domain of dictionaries, a consistent method
interface will be adopted that is tailored to the requirements of
that domain. This of course complicates the sharing of meth-
ods between domains; however, it would be impossible at this
time to define an implementation strategy inside the DDL that
would even begin to satisfy the diverse requirements of poten-
tial DDL users. Consequently, the definition of each method
is limited to: its unique identifier, _method_list.id; a textual
description, _method_list.detail; the source text of the method,

_method_list.inline; the name of the language in which the
method is expressed, _method_list.language; and a code to iden-
tify the purpose of the method, _method_list.code.

2.6.6.4. DDL2 definitions describing dictionaries and data
blocks

In this section, the DDL categories that describe the character-
istics of dictionaries and data blocks are presented. In this context,
a dictionary is defined as a group of related definitions within a
STAR data block. Fig. 2.6.4.3 illustrates the organization for these
categories.

2.6.6.4.1. DATABLOCK

The DATABLOCK category holds the essential identi-
fying information for a data block: the name of the
data block, _datablock.id; and a description of the
block, _datablock.description. The _datablock.id is
the parent identifier for both _category.implicit_key and
_dictionary.datablock_id. The former guarantees that the iden-
tifier for the data block, and hence the dictionary, is added implic-
itly to the key of each category.

2.6.6.4.2. DATABLOCK METHODS

The DATABLOCK_METHODS category may be associated with a
data block. The method identifiers reference the full method defi-
nitions in the parent METHOD_LIST category.

2.6.6.4.3. DICTIONARY

The DICTIONARY category holds the essential identifying infor-
mation for a data dictionary. The items recorded in this cat-
egory include the title for the dictionary, _dictionary.title,
the current version identifier, _dictionary.version, and the
data-block identifier in which the dictionary is defined,
_dictionary.datablock_id. The version identifier references the
parent identifier in the DICTIONARY_HISTORY category in which
each dictionary revision is described.

2.6.6.4.4. DICTIONARY HISTORY

The DICTIONARY_HISTORY category holds the revision history
for a dictionary. Each revision is assigned a version identifier that
acts as the key item for the category. Along with the version infor-
mation, a text description of the revision and date of revision must
be specified.

References
Allen, F. H., Barnard, J. M., Cook, A. F. P. & Hall, S. R. (1995). The

Molecular Information File (MIF): core specifications of a new stan-
dard format for chemical data. J. Chem. Inf. Comput. Sci. 35, 412–427.

Hall, S. R. (1991). The STAR File: a new format for electronic data trans-
fer and archiving. J. Chem. Inf. Comput. Sci. 31, 326–333.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallographic
Information File (CIF): a new standard archive file for crystallogra-
phy. Acta Cryst. A47, 655–685.

Hall, S. R. & Cook, A. P. F. (1995). STAR dictionary definition language:
initial specification. J. Chem. Inf. Comput. Sci. 35, 819–825.

Hall S. R. & Spadaccini, N. (1994). The STAR File: detailed specifica-
tions. J. Chem. Inf. Comput. Sci. 34, 505–508.

Westbrook, J. D. & Hall, S. R. (1995). A dictionary description
language for macromolecular structure. http://ndbserver.rutgers.edu/
mmcif/ddl/.

70 references

http://it.iucr.org/Ga/ch2o6v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

