
3. CIF DATA DEFINITION AND CLASSIFICATION

A software application validating against CIF dictionaries
should attempt to locate and validate against the referenced dic-
tionaries in the order cited in the data file, according to the follow-
ing procedure. The terms ‘warning’ and ‘error’ in this procedure
are not necessarily messages to be delivered to a user. They may
be handled as condition codes or return values delivered to calling
procedures instead.

If N, V and L are all given, try to load the file from the location
L, or a locally cached copy of the referenced file. If this fails, raise
a warning. Then search the dictionary register for entries matching
the given N and V . (An appropriate strategy would be to search a
locally cached copy of the register, and to refresh that local copy
with the latest version from the network if the search fails.) If a
successful match is made, try to retrieve the file from the location
given by the matching entry in the register (or a locally cached
copy with the same N and V previously fetched from the location
specified in the register). If this fails, try to load files identified
from the register with the same N but progressively older versions
V (version numbering takes the form n.m.l . . ., where n, m, l, . . .
are integers referring to progressively less significant revision lev-
els). Version ‘.’ (meaning the current version) should be accessed
before any other numbered version. If this fails, raise a warning
indicating that the specified dictionary could not be located.

If N and V but not L are given, try to load locally cached or
master copies of the matching dictionary files from the location
specified in the register file, in the order stated above, viz: (i) the
version number V specified; (ii) the version with version number
indicated as ‘.’; (iii) progressively older versions. Success in other
than the first instance should be accompanied by a warning and an
indication of the revision actually loaded.

If only N is given, try to load files identified in the register by (i)
the version with version number indicated as ‘.’; (ii) progressively
older versions.

If all efforts to load a referenced dictionary fail, the validation
application should raise a warning.

If all efforts to load all referenced dictionaries fail, the validation
application should raise an error.

For any dictionary file successfully loaded according to this pro-
tocol, the validation application must perform a consistency check
by scanning the file for internal identifiers (_dictionary_name,
_dictionary_version or the DDL2 equivalents) and ensuring that
they match the values of N and V (where V is not ‘.’). Failure in
matching should raise an error.

3.1.9. Composite dictionaries

The dictionaries referenced by a data file are those that contain
the definitions of the data names used in the data file. Typically
these include or consist entirely of public dictionaries that are
necessarily permissive in the range of values allowed for data
items. However, the power and flexibility of validating against
machine-readable dictionaries could be harnessed by applica-
tions that need to impose stricter validation criteria. For exam-
ple, the core dictionary permits an enumeration range of 0 to 8
for _atom_site_attached_hydrogens, but one might wish to val-
idate a data set describing well behaved organic molecules where
anything above 4 is almost certainly an error. It would be helpful to
have a validation dictionary identical to the core dictionary except
for this enumeration range; however it would be inefficient to cre-
ate an alternative dictionary of the same size simply for this one
change. In Section 3.1.9.1, we consider how to build a dictionary
file that includes the bulk of the content of the public dictionar-
ies cited in the CIF, together with modifications in local dictionary

files to allow alternative specifications of what constitutes a ‘valid’
data item.

Proper applications of this approach include restricting the enu-
meration range specified for an item in a public dictionary; enforc-
ing a more strict data typing than allowed by the parent dictionary;
storing a list of all data names (including local ones) permitted in
a CIF; or adding to existing dictionary entries references to local
data items in an extension dictionary. An example of the latter
application would be the addition of a _list_link_child entry
to a public definition to accompany the introduction of a new child
category in a local dictionary. The protocol to be described does
not prohibit other applications, but care must be taken to gener-
ate dictionaries that retain internal consistency and are properly
parsable by standard validation tools.

3.1.9.1. A dictionary merging protocol

The following protocol describes the construction of a compos-
ite, or virtual, dictionary by merging and overlaying fragments
of a local validation dictionary and the public dictionaries ref-
erenced from within a data file. The term ‘dictionary fragment’
refers here to a physical disk file which contains one or more
data blocks or save frames (according to whether the relevant data
model is DDL1 or DDL2) containing complete or partial sets of
attributes associated with data names identified in the relevant dic-
tionary data block or save frame through the item _name (DDL1)
or _item.name (DDL2).

(i) Assemble and load all dictionary fragments against which the
current data block will be validated. The order of presentation is
important. Complete dictionaries referenced by a data file should
be assembled in the order cited. A dictionary validation applica-
tion may then accept a list of additional dictionary fragments to
PREPEND to, REPLACE or APPEND to each file in the list of
cited dictionaries. In most applications, it will be appropriate to
append to or replace attributes defined in a public dictionary, and
the PREPEND operation is presented only for completeness.

(ii) Define three modes in which conflicting data names in
the aggregate dictionary file may be resolved, called STRICT,
REPLACE and OVERLAY.

(iii) Scan the aggregate dictionary fragments in the order of
loading. Assemble for each defined data name a composite defi-
nition frame (data block or save frame as appropriate) as follows,
depending on the mode in which the validation application is oper-
ating:

STRICT: If a data name appears to be multiply defined, generate
a fatal error. This mode permits the interpolation of local dictionar-
ies that do not attempt to modify the attributes of public data items.

REPLACE: All attributes previously stored for the conflicting
data name are deleted, and only the attributes in the later data
block (or save frame) containing the definition are preserved. This
mode permits the complete redefinition of public data names and is
not appropriate for validation of CIFs to be archived. Its main use
would be in testing modifications of individual definition frames
outside the parent dictionary.

OVERLAY: New attributes are added to those already stored
for the data name; conflicting attributes replace those already
stored. This is the standard mechanism for modifying attributes
for application-specific validation purposes.

This protocol allows the creation of a coherent virtual dictio-
nary from several different dictionary files or fragments. Although
it must be used with care, it permits different levels of validation
based on dictionary-driven methods without modifying the origi-
nal dictionary files themselves.

88

International Tables for Crystallography (2006). Vol. G, Section 3.1.9, pp. 88–89.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch3o1v0001/sec3o1o9/

3.1. GENERAL CONSIDERATIONS WHEN DEFINING A CIF DATA ITEM

Example 3.1.9.1. A standard CIF dictionary definition block.

data_atom_site_attached_hydrogens
_name ’_atom_site_attached_hydrogens’
_category atom_site
_type numb
_list yes
_list_reference ’_atom_site_label’
_enumeration_range 0:8
_enumeration_default 0
loop_ _example

_example_detail 2 ’water oxygen’
1 ’hydroxyl oxygen’
4 ’ammonium nitrogen’

_definition
; The number of hydrogen atoms attached

to the atom at this site excluding any
hydrogen atoms for which coordinates
(measured or calculated) are given.

;

Example 3.1.9.2. A modified data attribute for overlaying a pub-
lic definition.

data_atom_site_attached_hydrogens_restricted
_name ’_atom_site_attached_hydrogens’
_enumeration_range 0:4

As an example, consider the core CIF dictionary definition men-
tioned above of the number of hydrogen atoms that might be
attached to an atom site (Example 3.1.9.1).

For a particular application, any structures reporting more than
four attached hydrogen atoms might be considered as invalid.
A validation program to satisfy this requirement might therefore
build a composite dictionary from the public cif core.dic, which
contains the definition in Example 3.1.9.1, and the fragment of
Example 3.1.9.2, processed in APPEND/OVERLAY modes.

3.1.9.2. Protocol implementation

At the time of publication (2005), there is no reference imple-
mentation for this protocol, and so the proper treatment of the fine
details of merging and overlay operations is not available. The
following guidelines outline the first steps in an implementation
under DDL1.4.

The description assumes that a composite dictionary is to be
assembled from two public dictionaries, a.dic and b.dic, and a local
dictionary mod.dic that includes some modifications to the defini-
tions in one or both of the public dictionaries (and is therefore
processed in OVERLAY mode). It is assumed that the compos-
ite dictionary will be written to disk as a separate file, virtual.dic,
although in practice applications may simply construct the image
of the composite dictionary in memory.

(1) Each contributing dictionary fragment should have at most
one data block containing the data names _dictionary_name and
_dictionary_version (with, optionally, _dictionary_update

and _dictionary_history). The *_name and *_version together
identify the dictionary file uniquely and should match the corre-
sponding entries in the IUCr register if this is a public dictionary.
This information is conventionally stored in a data block named
data_on_this_dictionary.

In DDL1.4, all four of the items _dictionary_name, *_version,
*_update and *_history are scalars, i.e. may not be looped.
Hence a new dictionary identifier section in virtual.dic may be con-
structed as follows.

(i) Create a data block data_on_this_dictionary at the begin-
ning of virtual.dic.

(ii) If a name for the composite dictionary is supplied (via
a command-line switch, for example), write this as the value

of _dictionary_name; otherwise generate a pseudo-unique string
(e.g. concatenate the computer identifier string, process number
and current date string).

(iii) If a dictionary version number is supplied (via a
command-line switch, for example), write this as the value of
_dictionary_version; otherwise supply the value ‘1.0’.

(iv) Supply the current date in the format yyyy-mm-dd as the
value of _dictionary_update.

(v) Create a composite _dictionary_history by concatenation
of the individual _dictionary_history fragments. The applica-
tion may add details of the current merge operation to the history
field.

(2) There is no significance to the ordering of data blocks con-
taining definitions in dictionaries, although they are convention-
ally sorted alphabetically. For convenience, data blocks should be
written out in the order in which they are encountered in the input
primitive dictionary files, except that definitions modified by sub-
sequent entries remain in their initial location.

(3) In STRICT mode, if the same value of _name is present in
two or more data blocks, the composite dictionary is invalid and
the application should raise a fatal error. Otherwise the composite
dictionary simply contains the aggregate definitions from multiple
input dictionaries.

(4) In REPLACE mode, a stored definition block is discarded
and replaced by a new definition of the item referenced by _name.

(5) For the OVERLAY mode (assumed in the present discus-
sion), the following procedure is proposed. Load a data block from
the first dictionary file. Locate the _name tag. (Because _name may
be looped, a data block may contain definitions for more than one
data name. For convenience, we consider only the case of a data
block containing a single value of _name. In any event, it is possible
to separate a set of looped definitions into individual data blocks,
each defining only one of the data names in the initial _name loop.)
Search the next dictionary file for a data block containing the same
value of _name. Load the contents of that data block.

(i) If the new data block contains only data items that do not
appear in the first data block, they are simply concatenated with
those already present.

(ii) If the new data block contains a scalar data item already
present in the first data block (i.e. with _list no), discard the
stored attributes.

(iii) If the new data block contains data items that may be looped
and that occur in the first data block, build a new composite table
of values in the following way: (a) construct a valid loop header if
necessary; (b) do not repeat identical sets of values (i.e. collapse
identical table rows); (c) if it is possible to identify the category
key, then raise a fatal error if there are identical instances of a key
value [after the normalization of step (b) has occurred]; (d) else
append new rows to the table.

When the new composite data block has been built according
to these principles, search the next dictionary file specified and
repeat.

3.1.10. Public CIF dictionaries

So far, seven CIF dictionaries have been published by the IUCr
with COMCIFS approval. They are described in the remaining
chapters in this part of the volume. This section provides an
overview of the large-scale structure of these dictionaries and
forms a general introduction to Chapters 3.2 to 3.8.

The public CIF dictionaries have been constructed by experts in
a number of different crystallographic fields. They are intended to
serve the individual fields in which they have been commissioned
and therefore vary in character depending on the requirements

89 references

http://it.iucr.org/Ga/ch3o1v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

