Tables for
Volume G
Definition and exchange of crystallographic data
Edited by S. R. Hall and B. McMahon

International Tables for Crystallography (2006). Vol. G. ch. 3.4, pp. 131-140

Chapter 3.4. Classification and use of modulated and composite structures data

G. Madariagaa*

aDepartamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain
Correspondence e-mail:


First citationCervellino, A., Haibach, T. & Steurer, W. (2002). Structure solution of the basic decagonal Al–Co–Ni phase by the atomic surfaces modelling method. Acta Cryst. B58, 8–33.Google Scholar
First citationChapuis, G., Farkas-Jahnke, M., Mato, J. M., Senechal, M., Steurer, W., Janot, C., Pandey, D. & Yamamoto, A. (1997). Checklist for the description of incommensurate modulated crystal structures. Report of the International Union of Crystallography Commission on Aperiodic Crystals. Acta Cryst. A53, 95–100.Google Scholar
First citationElcoro, L., Pérez-Mato, J. M., Darriet, J. & El Abed, A. (2003). Superspace description of trigonal and orthorhombic A1+xA′xB1−xO3 compounds as modulated layered structures; application to the refinement of trigonal Sr6Rh5O15. Acta Cryst. B59, 217–233.Google Scholar
First citationHaibach, T., Cervellino, A., Estermann, M. A. & Steurer, W. (2000). X-ray structure determination of quasicrystals – limits and potentiality. Z. Kristallogr. 215, 569–583.Google Scholar
First citationJanssen, T., Janner, A., Looijenga-Vos, A. & de Wolff, P. M. (2004). Incommensurate and commensurate modulated structures. International Tables for Crystallography, Volume C, Mathematical, chemical and physical tables, 3rd ed., edited by E. Prince, ch. 9.8. Dordrecht: Kluwer Academic Publishers.Google Scholar
First citationPérez-Mato, J. M., Etrillard, J., Kiat, J. M., Liang, B. & Lin, C. T. (2003). Competition between composite and modulated configurations in Bi2Sr2CaCu2O8 + δ and its relation to oxygen stoichiometry. Phys. Rev. B, 67, 24504-1–24504-13.Google Scholar
First citationPetříček, V. & Dušek, M. (2000). The Crystallographic Computing System JANA. Institute of Physics, Prague, Czech Republic.Google Scholar
First citationPetříček, V., van der Lee, A. & Evain, M. (1995). On the use of crenel functions for occupationally modulated structures. Acta Cryst. A51, 529–535.Google Scholar
First citationSmaalen, S. van (1991). Superspace-group approach to the modulated structure of the inorganic misfit layer compound (LaS)1.14NbS2. J. Phys. Condens. Matter, 3, 1247–1263.Google Scholar
First citationSmaalen, S. van (1995). Incommensurate crystal structures. Crystallogr. Rev. 4, 79–202.Google Scholar
First citationSpadaccini, N., Hall, S. R. & Castleden, I. R. (2000). Relational expressions in STAR File dictionaries. J. Chem. Inf. Comput. Sci. 40, 1289–1301.Google Scholar
First citationWolff, P. M. de (1974). The pseudo-symmetry of modulated crystal structures. Acta Cryst. A30, 777–785.Google Scholar
First citationWolff, P. M. de, Janssen, T. & Janner, A. (1981). The superspace groups for incommensurate crystal structures with a one-dimensional modulation. Acta Cryst. A37, 625–636.Google Scholar