International
Tables for Crystallography Volume G Definition and exchange of crystallographic data Edited by S. R. Hall and B. McMahon © International Union of Crystallography 2006 |
International Tables for Crystallography (2006). Vol. G. ch. 3.4, p. 133
Section 3.4.3.1.1. Cell and modulation wave vectors^{a}Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain |
The categories describing the unit cell (or cells for composite structures), the wave vectors of the modulations and, for composites, the cell subsystems are as follows:
Categories marked with ¶ are already defined in the core CIF dictionary.
The data items in these categories are as follows:
(and _cell_subsystem_matrix_W_m_n for all combinations )
As explained in Section 3.4.2, the msCIF dictionary arbitrarily allows an upper limit of 11 for the dimension of superspace for which data names are defined. _cell_modulation_dimension specifies the number of additional reciprocal vectors needed to index the whole diffraction pattern and has values d ranging from 1 to 8 to express the dimensionality (3 + d) of the superspace. _cell_reciprocal_basis_description is a text field allowing a free description of the higher-dimensional basis chosen.
For a composite structure, different cell subsystems may be specified. Each such subsystem is identified and characterized by the data items in the CELL_SUBSYSTEM category (see Section 3.4.4.1). _cell_subsystems_number gives the number of such subsystems as an independent check of the completeness of the description.
Data items in the CELL_WAVE_VECTOR category specify the wave vectors of the modulation (see Section 3.4.4.1). In accordance with the limits on dimensionality of the current version of the msCIF dictionary, no more than eight additional modulation wave vectors may be specified. The number used must agree with the value of _cell_modulation_dimension.
The data items in the CELL_WAVE_VECTORS category describe the experimental conditions during the determination of the independent modulation wave vectors.