Tables for
Volume G
Definition and exchange of crystallographic data
Edited by S. R. Hall and B. McMahon

International Tables for Crystallography (2006). Vol. G. ch. 3.5, pp. 141-143

Chapter 3.5. Classification and use of electron density data

P. R. Mallinsona* and I. D. Brownb

aDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, and bBrockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S 4M1
Correspondence e-mail:


First citationBader, R. F. W. (1990). Atoms in molecules: a quantum theory. Oxford University Press.Google Scholar
First citationClementi, E. & Roetti, C. (1974). Roothan–Hartree–Fock atomic wavefunctions. Basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms. At. Data Nucl. Data Tables, 14, 177–478.Google Scholar
First citationCoppens, P. (1997). X-ray charge densities and chemical bonding. Oxford University Press.Google Scholar
First citationHall, S. R. & Bernstein, H. J. (1996). CIF applications. V. CIFtbx2: extended tool box for manipulating CIFs. J. Appl. Cryst. 29, 598–603.Google Scholar
First citationHansen, N. K. & Coppens, P. (1978). Testing aspherical atom refinements on small-molecule data sets. Acta Cryst. A34, 909–921.Google Scholar
First citationHohenberg, P. & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev. (Second Series), 136, B864–B871.Google Scholar
First citationKohn, W., Becke, A. D. & Parr, R. G. (1996). Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–12980.Google Scholar
First citationKoritsanszky, T., Richter, T., Macchi, P., Volkov, A., Gatti, C., Howard, S., Mallinson, P. R., Farrugia, L., Su, Z. & Hansen, N. K. (2003). XD. Computer program package for multipole refinement and topological analysis of electron densities from diffraction data. . Google Scholar
First citationKoritsanszky, T. S. & Coppens, P. (2001). Chemical applications of X-ray charge density analysis. Chem. Rev. 101, 1583–1627.Google Scholar
First citationLabanowski, J. K. & Andzelm, J. W. (1991). Density-functional methods in chemistry. New York: Springer-Verlag.Google Scholar
First citationMallinson, P. R., Wozniak, K., Smith, G. T. & McCormack, K. L. (1997). A charge density analysis of cationic and anionic hydrogen bonds in a `proton sponge' complex. J. Am. Chem. Soc. 119, 11502–11509.Google Scholar
First citationNagy, A. (1998). Density functional. Theory and application to atoms and molecules. Phys. Rep. 298, 2–79.Google Scholar
First citationSpackman, M. A. & Brown, A. S. (1994). Charge densities from X-ray diffraction data. R. Soc. Chem. Ann. Rep. Sect. C, pp. 175–212.Google Scholar
First citationStewart, R. F. (1973). Electron population analysis with generalized X-ray scattering factors: higher multipoles. J. Chem. Phys. 58, 1668–1676.Google Scholar
First citationZiegler, T. (1991). Approximate density functional theory as a practical tool in molecular energetics and dynamics. Chem. Rev. 91, 651–667.Google Scholar