3.6. CLASSIFICATION AND USE OF MACROMOLECULAR DATA

```
_citation.page_last
_citation.details (~ _citation_special_details)
_citation.title
_citation.year

(b) CITATION_AUTHOR

• _citation_author.citation_id
_ citation_author.name
_citation_author.ordinal

(c) CITATION_EDITOR

• _citation_editor.citation_id
_ citation_editor.name
_citation_editor.name
_citation_editor.name
_citation_editor.name
_citation_editor.ordinal
```

The bullet (\bullet) indicates a category key. The arrow (\rightarrow) is a reference to a parent data item. Items in italics have aliases in the core CIF dictionary formed by changing the full stop (\cdot) to an underscore $(_)$.

The original core CIF dictionary contained the data item <code>_publ_section_references</code> for citations of journal articles, book chapters and monographs. The authors of the mmCIF dictionary felt that a more detailed and structured approach to literature citations was required. This is provided by the mmCIF categories CITATION, CITATION_AUTHOR and CITATION_EDITOR. These categories were subsequently included in the core CIF dictionary and are used in the same way in both dictionaries. Section 3.2.5.1 may be consulted for details. Although <code>_publ.section_references</code> remains a valid mmCIF data item, it is expected that the CITATION, CITATION_AUTHOR and CITATION_EDITOR categories will be used for literature citations in mmCIFs.

3.6.8.2. Citation of software packages

The categories describing software citations are as follows: COMPUTING group

COMPUTING

SOFTWARE

It is expected that citations of software packages in an mmCIF will be made using data items in the SOFTWARE category. However, in some cases, a particular publisher or database may require that this information is given using data items in the COMPUTING category instead (see Section 3.2.5.2 for details).

Data items in these categories are as follows:

```
(a) COMPUTING
```

```
_computing.entry_id
          entry.id
  computing.cell_refinement
 _computing.data_collection
  computing.data reduction
  computing.molecular graphics
  computing.publication material
  computing.structure refinement
  _computing.structure_solution
(b) SOFTWARE
  software.name
  software.version
  _software.citation_id
         → _citation.id
  software.classification
  software.compiler name
  software.compiler version
  software.contact author
 _software.contact_author_email
  _software.date
  _software.dependencies
  software.description
  software.hardware
  software.language
  software.location
  software.mods
```

```
_software.os
_software.os_version
_software.type
```

The bullet (\bullet) indicates a category key. Where multiple items within a category are marked with a bullet, they must be taken together to form a compound key. The arrow (\rightarrow) is a reference to a parent data item. Items in italics have aliases in the core CIF dictionary formed by changing the full stop (.) to an underscore (.).

The data item _computing.entry_id has been added to the COMPUTING category to provide the formal category key required by the DDL2 data model.

The data items in the SOFTWARE category are used to cite the software packages used in the structure analysis. The software can be described in great detail if necessary. However, for most applications a small subset of these data items, for example just _software.name and _software.version, could be used (see Example 3.6.8.1).

Most data items in the SOFTWARE category are selfexplanatory, but a few require further comment. The data item _software.citation_id provides a way to link the details of a program to the citation of an article in the literature that describes the program; this data item must match a value of citation.id in the CITATION category. The name and e-mail address of the author of the software can also be given using software.contact author and software.contact author email, respectively. (This may be the original author or someone who subsequently modifies or maintains the software; these data items would generally refer to the person most closely associated with the maintenance of the code at the time it was used.) The release date of the software may be recorded in software.date. As far as possible, the date should be that of the version recorded in software.version. The data item software.location may be used to supply a URL from which the software may be downloaded or where it is described in detail.

3.6.8.3. Citation of related database entries

Categories describing related database entries are as follows:

DATABASE group

Related database entries (§3.6.8.3.1)

DATABASE

DATABASE 2

```
Example 3.6.8.1. The refinement program Prolsq described with
  data items in the SOFTWARE category.
software.name
software.version
_software.date
software.type
software.contact author
_software.contact_author email
software.location
software.classification
software.citation id
__software.language
software.compiler name
software.compiler_version
software.hardware
software.os
software.os version
software.dependencies
software.mods
software.description
  Prolsq
            unknown
                           program
    'Wayne A. Hendrickson'
    'ftp://rosebud.sdsc.edu/pub/sdsc/xtal/CCP4/ccp4/
   refinement ref5 Fortran
  'Convex Fortran' v8.0 'Convex C220' ConvexOS v10.1
                                            optimized
    'Requires that Protin be run first'
    'restrained least-squares refinement'
```

3. CIF DATA DEFINITION AND CLASSIFICATION

```
Compatibility with PDB format files (§3.6.8.3.2)
DATABASE_PDB_CAVEAT
DATABASE_PDB_MATRIX
DATABASE_PDB_REMARK
DATABASE_PDB_REV
DATABASE_PDB_REV_RECORD
DATABASE_PDB_TVECT
```

The purpose of entries in the DATABASE category group is to provide pointers that link the mmCIF to all database entries that result from the deposition of the file. For mmCIF, the relevant category is DATABASE_2, which replaces the DATABASE category of the core dictionary.

Note the distinction between the database pointers provided here and those in the STRUCT_REF family of categories. The latter are intended to provide links to external database entries for any aspect of any subset of the structure that the author may wish to record, including previous determinations of the same structure, other structures containing the same ligand or references to the sequence(s) of the macromolecule(s) in sequence databases. In contrast, the links provided in DATABASE_2 refer to the entire contents of the mmCIF and are designed to cover situations in which the entire file is deposited in more than one database (for example, in the PDB and in a database for protein kinases).

3.6.8.3.1. Related database entries

Data items in these categories are as follows:

```
(a) DATABASE
```

```
_database.entry_id
          entry.id
   database.code CAS
   database.code CSD
   database.code ICSD
   database.code MDF
   database.code NBS
   database.code PDB
   database.code PDF
   database.code depnum ccdc archive
   database.code depnum ccdc fiz
   database.code depnum ccdc journal
   database.CSD history
   database.journal ASTM
  database.journal CSD
(b) DATABASE 2
```

- _database_2.database_id
- _database_2.database_code

The bullet (ullet) indicates a category key. Where multiple items within a category are marked with a bullet, they must be taken together to form a compound key. The arrow (\to) is a reference to a parent data item. Items in italics have aliases in the core CIF dictionary formed by changing the full stop $(\ .\)$ to an underscore $(\)$.

The DATABASE category is retained in the mmCIF dictionary, but only for consistency with the core dictionary.

The role of the data items in the DATABASE_2 category is to store identifiers assigned by one or more databases to the structure described in the mmCIF. In the data model used in the core CIF dictionary, each database has an individual data item. The data model in mmCIF is more general. It comprises the data items _database_2.database_id, which identifies the database, and _database_2.database_code, which is the code assigned by the database to the entry. Thus a new database can be referred to without needing to add an additional data item to the dictionary. If a structure has been deposited in more than one database, the values of _database_2.database_id and _database_2.database_code can be looped.

The institutions and individual databases recognized in the DATABASE_2 category in the current version of the mmCIF dictionary are CAS (*Chemical Abstracts* Service), CSD (Cam-

bridge Structural Database), ICSD (Inorganic Crystal Structure Database), MDF (Metals Data File), NDB (Nucleic Acid Database), NBS (the Crystal Data database of the National Institute of Standards and Technology, formerly the National Bureau of Standards), PDB (Protein Data Bank), PDF (Powder Diffraction File), RCSB (Research Collaboratory for Structural Bioinformatics) and EBI (European Bioinformatics Institute). It is intended that new databases will be added to this list on an ongoing basis; the purpose of specifying a list of possible databases in the dictionary is to ensure that each database is referenced consistently.

3.6.8.3.2. Compatibility with PDB format files

Data items in these categories are as follows:

```
(a) DATABASE_PDB_REV

• _database_PDB_rev.num
_database_PDB_rev.author_name
_database_PDB_rev.date
_database_PDB_rev.date_original
_database_PDB_rev.mod_type
_database_PDB_rev.replaced_by
_database_PDB_rev.replaces
_database_PDB_rev.status
```

```
(b) DATABASE_PDB_REV_RECORD

• _database_PDB_rev_record.rev_num

→ database_PDB_rev.num
```

• _database_PDB_rev_record.type _database_PDB_rev_record.details

```
(c) DATABASE PDB MATRIX
```

```
• _database_PDB_matrix.entry_id

ightarrow <code>_entry.id</code>
  _database_PDB_matrix.origx[1][1]
  database PDB matrix.origx[1][2]
  database PDB matrix.origx[1][3]
  database PDB matrix.origx[2][1]
  database PDB matrix.origx[2][2]
  database PDB matrix.origx[2][3]
  database PDB matrix.origx[3][1]
 _database_PDB_matrix.origx[3][2]
  _database_PDB_matrix.origx[3][3]
  database PDB matrix.origx vector[1]
  database_PDB_matrix.origx_vector[2]
  database PDB matrix.origx vector[3]
  database PDB matrix.scale[1][1]
  database PDB matrix.scale[1][2]
  database_PDB_matrix.scale[1][3]
  _database_PDB_matrix.scale[2][1]
  database_PDB_matrix.scale[2][2]
   database PDB matrix.scale[2][3]
  database PDB matrix.scale[3][1]
  database PDB matrix.scale[3][2]
  database PDB matrix.scale[3][3]
  database PDB matrix.scale vector[1]
  database PDB matrix.scale vector[2]
  _database_PDB_matrix.scale_vector[3]
```

```
(d) DATABASE PDB TVECT
```

```
    database PDB tvect.id
        _database PDB tvect.details
        _database PDB tvect.vector[1]
        _database PDB tvect.vector[2]
        _database PDB tvect.vector[3]
```

```
(e) DATABASE_PDB_CAVEAT

• _database_PDB_caveat.id
   _database_PDB_caveat.text
```

```
(f) DATABASE_PDB_REMARK
• _database_PDB_remark.id
    _database_PDB_remark.text
```

The bullet (\bullet) indicates a category key. Where multiple items within a category are marked with a bullet, they must be taken together to form a compound key. The arrow (\rightarrow) is a reference to a parent data item.

3.6. CLASSIFICATION AND USE OF MACROMOLECULAR DATA

A major goal of the design of the mmCIF data model was that a file could be transformed from Protein Data Bank (PDB) format to mmCIF format and back again without loss of information. This required the creation of mmCIF data items whose sole purpose is to capture PDB-specific records that do not map onto mmCIF data items. These records would never be created for a *de novo* mmCIF. This family of categories also belongs to the PDB category group (see Section 3.6.9.3).

The items in the categories DATABASE_PDB_MATRIX and DATABASE_PDB_TVECT are derived from the elements of transformation matrices and vectors used by the Protein Data Bank. The items in the categories DATABASE_PDB_REV and DATABASE_PDB_REV_RECORD record details about the revision history of the data block as archived by the Protein Data Bank.

The items in the DATABASE_PDB_CAVEAT category record comments about the data block flagged as 'CAVEATS' by the Protein Data Bank at the time the original PDB archive file was created. A PDB CAVEAT record indicates that the entry contains severe errors. In PDB format, extended comments were stored as a sequence of fixed-length (80-character) format records, columns 9 and 10 being reserved for continuation sequence numbering. The mmCIF representation retains each record as a separate data value and does not attempt to merge continuation records to provide more readable running text. Hence the PDB CAVEAT entry

```
CAVEAT 1ABC THE CRYSTAL TRANSFORMATION IS WRONG CAVEAT 2 1ABC BUT IS UNCORRECTABLE AT THIS TIME
```

would be represented in mmCIF as

```
loop_
_database_PDB_caveat.id
_database_PDB_caveat.text

1
; THE CRYSTAL TRANSFORMATION IS WRONG;

2
; BUT IS UNCORRECTABLE AT THIS TIME
```

The PDB format used 'REMARK' records to store information relating to several aspects of the structure in free or loosely structured text. In some cases, the conventions used for individual types of REMARK record allow structured data to be extracted automatically and translated to specific mmCIF data items. Where this is not possible, the DATABASE PDB REMARK category may be used to retain the information that appeared in these parts of PDB format files. Unlike the CAVEAT records, it is possible to collect together several REMARK records sharing a common numbering into a single free-text field. For example, PDB practice has been to repeat the contents of CAVEAT records (see above) as records of type 'REMARK 5'. While each separate CAVEAT record is converted to a separate mmCIF data value, the complete text of a REMARK 5 record may be gathered into a single mmCIF data value. Hence the CAVEAT example above would also appear in a PDB file as part of a 'REMARK 5' as

```
REMARK 5 THE CRYSTAL TRANSFORMATION IS WRONG REMARK 5 BUT IS UNCORRECTABLE AT THIS TIME
```

and would appear in an mmCIF as

```
loop_
_database_PDB_remark.id
_database_PDB_remark.text
5
; THE CRYSTAL TRANSFORMATION IS WRONG
BUT IS UNCORRECTABLE AT THIS TIME
```

Note that by convention the value of _database_PDB_remark.id matches the class of the REMARK record in the PDB file.

3.6.8.4. Article publication

```
Categories used during the publication of an article are as fol-
ows:
IUCR group
```

```
Journal housekeeping and reference entries (§3.6.8.4.1)

JOURNAL

JOURNAL_INDEX

Contents of a publication (§3.6.8.4.2)
```

PUBL_AUTHOR

PUBL_BODY
PUBL MANUSCRIPT INCL

These categories cover both the metadata for the article (information about the article) and the text of the article itself.

3.6.8.4.1. Journal housekeeping and citation entries

Data items in these categories are as follows: (a) JOURNAL

journal.data_validation_number

journal.date_accepted

_journal.date_from_coeditor

journal.date to coeditor

_____journal.date_printers_final
__journal.date_printers_first
__journal.date_proofs_in
__journal.date_proofs_out
__journal.date_recd_copyright
__journal.date_recd_electronic
__journal.date_recd_hard_copy
__journal.issue

__journal.language
__journal.name__full
__journal.page__last
__journal.paper__category
__journal.suppl__publ__number
__journal.suppl__publ__pages
__journal.techeditor__address
__journal.techeditor__code
__journal.techeditor__email
__journal.techeditor__fax

_journal.techeditor_name _journal.techeditor_notes _journal.techeditor_phone _journal.volume _journal.year

(b) JOURNAL_INDEX
_journal_index.subterm
_journal_index.term
_journal_index.type

The bullet (\bullet) indicates a category key. The arrow (\rightarrow) is a reference to a parent data item. Items in italics have aliases in the core CIF dictionary formed by changing the full stop (\cdot) to an underscore $(_)$.

In mmCIF, the families of categories used to contain the text of an article for publication and to record information about the handling and processing of the article by a publisher are assigned to the IUCR category group. The name arose from the fact that CIF is sponsored by the International Union of Crystallography and several of the journals of the IUCr can handle articles submitted for publication in CIF format. However, these data items may be