4.3. Modulated and composite structures dictionary (msCIF)

By G. Madariaga

This is version 1.0.1 of the modulated and composite structures CIF dictionary (msCIF). The data names defined in this dictionary complement and/or extend those in the core CIF dictionary (Chapter 4.1) to cover the specific structural features of modulated and composite structures. The msCIF dictionary includes 19 new categories and extends 18 that already exist in the core CIF dictionary. A commentary on the use of this dictionary may be found in Chapter 3.4.

Categories are described in alphabetic order; data items are arranged alphabetically within each category.

ATOM_SITE

Data items in the ATOM SITE category record details about the atom sites in a crystal structure, such as the positional coordinates, atomic displacement parameters, and magnetic moments and directions. This category exists in the core CIF dictionary but is extended in this dictionary by the addition of some items that may appear in the main looped list of atom-site information.
_atom_site_displace_modulation_flag
(char)
$\overline{\mathrm{A}}$ code that signals whether the structural model includes the modulation of the positional coordinates of a given atom site.

```
Appears in list containing atom site label.
The data value must be one of the following:
yes displacive modulation
Y abbreviation for 'yes'
no no displacive modulation
n abbreviation for 'no'
```

Where no value is given, the assumed value is ' $n o$ '.

atom site occ modulation flag

A code that signals whether the structural model includes the modulation of the occupation of a given atom site.

```
Appears in list containing _atom_site_label.
The data value must be one of the following:
yes occupational modulation
    Y abbreviation for 'yes'
    no no occupational modulation
    n abbreviation for 'no'
```

Where no value is given, the assumed value is 'no'.

_atom_site_subsystem_code

(char)
A code that links a given atom or rigid-group site to one of the subsystems present in a composite. This code provides an alternative description for composites which is less explicit than that based on linked data blocks (see the description in this dictionary of aUdIT LINK). It must match one of the labels specified for _cell_subsystem_code.
Appears in list containing _atom_site_label. Must match parent data name
_cell_subsystem_code.
[atom_site]

[^0]_atom_site_U_modulation_flag (char)
$\overline{\text { A code that signals whether the structural model includes the mod- }}$ ulation of the thermal parameters of a given atom site.

```
Appears in list containing _atom_site_label
The data value must be one of the following:
    yes modulation of thermal parameters
    Y abbreviation for 'yes'
    no no modulation of thermal parameters
        abbreviation for 'no'
```

Where no value is given, the assumed value is 'no'. [atom_site]

ATOM_SITE_DISPLACE_FOURIER

Data items in the ATOM_SITE_DISPLACE_FOURIER category record details about the Fourier components of the displacive modulation of an atom site in a modulated structure. In the case of rigid groups, items in this category would only include the translational part of the modulation. The rotational part would appear in a separate list of items belonging to the ATOM_SITE_ROT_FOURIER category. The (in general complex) coefficients of each Fourier component belong to the category ATOM_SITE_DISPLACE_FOURIER_PARAM and are listed separately.
Example 1 - based on the modulated structure of inorganic misfit layer $(L a S)_{1.14} N b S_{2}$ [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].

loop_

_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_description 10.568 - 'First harmonic'
loop
_atom_site_displace_Fourier_id
_atom_site_displace_Fourier_atom_site_label
atom site displace Fourier axis
_atom_site_displace_Fourier_wave_vector_seq_id $\begin{array}{llll}\mathrm{Nb} 1 \mathrm{z} 1 & \mathrm{Nb} 1 \quad \mathrm{z} & 1\end{array}$ $\mathrm{Nb} 1 \mathrm{x} 2 \mathrm{Nb} 1 \quad \mathrm{x} \quad 2$ $\mathrm{Nb} 1 \mathrm{y} 2 \mathrm{Nb} 1 \quad \mathrm{y} \quad 2$ S1x1 S1 \quad x 1 $\begin{array}{llll}\text { Sly1 } & \text { S1 } & y & 1\end{array}$ $\begin{array}{llll}\text { s1z1 } & \text { S1 } & z & 1\end{array}$

S1x2	S1	\mathbf{x}	2
s1y2	S 1	y	2

$\mathrm{siz2}$	S 1	z

Example 2 - based on the modulated structure of inorganic misfit layer $(\text { LaS })_{1.14} N b S_{2}$ [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
\# NbS2 subsystem has been chosen as reference, i.e. its
\# W matrix is the unit matrix.
loop_
_cell_subsystem_code
_cell_subsystem_description
_cell_subsystem_matrix_W_1_1
_cell_subsystem_matrix_W_1_4
_cell_subsystem_matrix_W_2_2
_cell_subsystem_matrix_W_3_3
_cell_subsystem_matrix_W_4_1
_cell_subsystem_matrix_W_4_4
NbS2 '1st subsystem' 101101
Las '2nd subsystem' 011110
\# The modulation wave vectors are referred to the reciprocal \# basis of each subsystem. They are related to the reciprocal \# basis used to index the whole diffraction pattern through \# the W matrices.
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_description

1	0.568	0	'First harmonic'
2	1.136	0	'Second harmonic'
3	1.761	0.5	'First harmonic'
4	3.522	1.0	'Second harmonic'

\# The modulation coefficients given below are referred to
\# each subsystem.

Example 3 - based on the modulated structure of inorganic misfit layer $(\text { LaS })_{1.14} N b S_{2}$ [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
\# The same structural data but expressed using a set of \# linked data blocks
\# Items concerning the modulated structure of the first
\# subsystem
data_LaSNbS2_MOD_NbS2
_audit_block_code 1997-07-24|LaSNbS2|G.M.|_MOD_NbS2
loop_
_audit_link_block_code
_audit_link_block_description
1997-07-24| LaSNbS2|G.M. |
'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
'reference structure (1st subsystem)'
'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
'reference structure (2nd subsystem)'
1997-07-21|LaSNbS2|G.M. |_MOD_LaS
'modulated structure (2nd subsystem)'
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_description
$\overline{1} \quad 0.568$ 'First harmonic'

loop_

_atom_site_displace_Fourier_id
_atom_site_displace_Fourier_atom_site_label
_atom_site_displace_Fourier_axis
_atom_site_displace_Fourier_wave_vector_seq_id

Nb 1 z 1	Nb 1	\mathbf{z}	1
Nb 1 x 2	Nb 1	\mathbf{x}	2
Nb 1 y 2	Nb 1	y	2
S 1 x 1	S 1	\mathbf{x}	1
S 1 y 1	S 1	y	1
S 1 z 1	S 1	z	1
S 1 x 2	S 1	\mathbf{x}	2
S 1 Y 2	S 1	y	2
S 1 z 2	S 1	z	2

\#\#\#\# End of modulated structure first subsystem data \#\#\#\#\#\#
\# Items concerning the modulated structure of the second
\# subsystem
data_LaSNbS2_MOD_LaS
_audit_block_code-
1997-07-24|LaSNbS2|G.M.|_MOD_LaS
loop_
_audit_link_block_code
-audit_link_block_description
1997-07-24|LaSNbS2|G.M.|
'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_NbS2
'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M.|_MOD_NbS2
'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
'reference structure (2nd subsystem)'
'modulated structure (2nd subsystem)'
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_z
_atom_site_Fourier_wave_vector_description
$1 \quad 1.761 \quad 0.5 \quad$ 'First harmonic'
loop_
_atom_site_displace_Fourier_id
__atom_site_displace_Fourier_atom_site_label
_atom_site_displace_Fourier_axis
_atom_site_displace_Fourier_wave_vector_seq_id

La1x1	La1	\mathbf{x}	1
La1y1	La1	\mathbf{y}	1
La1z1	La1	\mathbf{z}	1
La1x2	La1	\mathbf{x}	2
La1y2	La1	\mathbf{y}	2
La1z2	La1	\mathbf{z}	2
S2x1	S2	\mathbf{x}	1
S2y1	S2	\mathbf{y}	1
S2z1	S2	z	1
S2x2	S2	\mathbf{x}	2
S2y2	S2	\mathbf{y}	2
S2z2	S2	z	2

\#\#\# End of modulated structure second subsystem data \#\#\#\#\#\#

Example 4 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 7584].
Note the entry from the ATOM_SITES_DISPLACE_FOURIER category to describe collective information relating to all the atom sites.

```
_atom_sites_displace_Fourier_axes_description
; a\overline{1}}\mathrm{ and \}\overline{2
    and the axis normal to the mean molecular plane.
;
loop_
    _atom_site_displace_Fourier_id
    _atom_site_displace_Fourier_atom_site_label
    _atom_site_displace_Fourier_axis
    _atom_site_displace_Fourier_wave_vector_seq_id
        Byphenyl_a1_1 Biphenyl al 1
```

Modulation parameters are usually looped in separate lists. Modulated parameters are the atom positions (displacive modulation), the atomic occupation (occupational modulation) and/or the atomic anisotropic (or isotropic) displacement parameters (referred to as modulation of thermal parameters, since the term 'displacement parameters' is ambiguous in this context). _atom_site_displace_Fourier_atom_site_label is the code that identifies an atom or rigid group in a loop in which the Fourier components of its displacive modulation are listed. In the case of a rigid group, this list would only include the translational part of its displacive modulation. The rotational part (if any) would appear in a separate list (see _atom_site_rot_Fourier_atom_site_label). This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_ label.
Appears in list containing_atom_site_displace_Fourier_id. Must match parent data name _atom_site_label. [atom_site_displace_Fourier]
_atom_site_displace_Fourier_axis
(char)
$\overline{\mathrm{A}}$ label identifying the displacement component of a given atom or rigid group that is being parameterized by Fourier series. a, b and \mathbf{c} are the basic lattice vectors of the reference structure. For composites they refer to the reference structure of each subsystem. $\mathbf{a}_{1}, \mathbf{a}_{2}$ and \mathbf{a}_{3} are defined by _atom_sites_displace_Fourier_axes_description.
Appears in list containing _atom_site_displace_Fourier_id.
The data value must be one of the following:
displacement along the a axis
displacement along the b axis
displacement along the c axis
displacement along an arbitrary a_{1} axis displacement along an arbitrary a_{2} axis displacement along an arbitrary a_{3} axis
[atom_site_displace_Fourier]

_atom_site_displace_Fourier_id

(char)
A code identifying each component of the displacive modulation of a given atom or rigid group when the modulation is expressed in terms of Fourier series. In the case of a rigid group, it applies only to the translational part of the distortion.
Appears in list as essential element of loop structure. May match child data name(s):
_atom_site_displace_Fourier_param_id.
[atom_site_displace_Fourier]
_atom_site_displace_Fourier_wave_vector_seq_id
A numeric code identifying the wave vectors of the Fourier terms used in the structural model to describe the displacive modulation of an atom or rigid group. In the case of a rigid group, it applies only to the translational part of the distortion. This code must match _atom_site_Fourier_wave_vector_seq_id.
Appears in list containing_atom_site_displace_Fourier_id. Must match parent data name_atom_site_Fourier_wave_vector_seq_id.
[atom_site_displace_Fourier]

ATOM_SITE_DISPLACE_FOURIER_PARAM

Data items in the ATOM_SITE_DISPLACE_FOURIER_PARAM category record details about the coefficients of the Fourier series used to describe the displacive modulation of an atom or rigid group. In the case of rigid groups, items in this category would only include the translational part of the modulation. The rotational part would appear in a separate list of items belonging to the ATOM_SITE_ROT_FOURIER_PARAM category. The Fourier components are defined in the category ATOM_SITE_DISPLACE_FOURIER and are listed separately.

Example 1 - based on the modulated structure of inorganic misfit laver $(\text { LaS })_{1.14}$ NbS S_{2} [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_description
$10.568 \quad$ 'First harmonic'
$21.136 \quad$ 'Second harmonic'
loop_
_atom_site_displace_Fourier_id
_atom_site_displace_Fourier_atom_site_label
_atom_site_displace_Fourier_axis
_atom_site_displace_Fourier_wave_vector_seq_id $\begin{array}{llll}\mathrm{Nb} 1 \mathrm{z} 1 & \mathrm{Nb} 1 & \mathrm{z} & 1 \\ \mathrm{Nb} 1 \mathrm{x} 2 & \mathrm{Nb} 1 & \mathrm{x} & 2\end{array}$ $\begin{array}{llll}\mathrm{Nb} 1 \times 2 & \mathrm{Nb} 1 & \mathbf{x} & 2 \\ \mathrm{Nb} 1 \mathrm{y} 2 & \mathrm{Nb} 1 & \mathrm{y} & 2\end{array}$ $\begin{array}{llll}\text { S1x1 } & \text { s1 } & \mathbf{x} & 1\end{array}$ $\begin{array}{llll}\mathrm{S} 1 \mathrm{y} 1 & \mathrm{~S} 1 & \mathrm{y} & 1\end{array}$ $\begin{array}{llll}\text { S1z1 } & \text { S1 } & z & 1 \\ \text { S1x2 } & \text { S1 } & \mathrm{x} & 2\end{array}$ $\begin{array}{llll}\text { S1y2 } & \text { S1 } & y & 2 \\ \text { S1z2 } & \text { S1 } & z & 2\end{array}$
loop_
_atom_site_displace_Fourier_param_id
_atom_site_displace_Fourier_param_cos
_atom_site_displace_Fourier_param_sin $\mathrm{Nb} 1 \mathrm{z} 1 \quad-0.0006(2) \quad 0$.
$\mathrm{Nb} 1 \mathrm{x} 2 \quad 0.0 .0078(17)$
$\mathrm{Nb} 1 \mathrm{y} 2 \quad-0.0014(7) \quad 0$.
S1x1 0. -0.0134(85)

Sly1 $\quad-0.0022(12) \quad 0$.
Slz1 $0.0014(14) \quad 0$.
S1x2 0. -0.0129(27)
S1y2 -0.0073(27) 0.
S1z2 -0.0012(3) 0 .

Example 2 - based on the modulated structure of inorganic misfit layer $(\text { LaS })_{1.14} \mathrm{NbS}_{2}$ [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
\# NbS2 subsystem has been chosen as reference, i.e. its
\# W matrix is the unit matrix.
loop_
_cell_subsystem_code
_cell_subsystem_description
_cell_subsystem_matrix_W_1_1
_cell_subsystem_matrix_W_1_4
_cell_subsystem_matrix_W_2_2
_cell_subsystem_matrix_W_3_3
_cell_subsystem_matrix_W_4_1
_cell_subsystem_matrix_W_-_-4
Nbs2 '1st subsystem' 1011101
LaS '2nd subsystem' $\begin{array}{lllllll}0 & 1 & 1 & 1 & 1 & 0\end{array}$
The modulation wave vectors are referred to the reciprocal
\# basis of each subsystem. They are related to the reciprocal
\# basis used to index the whole diffraction pattern through
\# the W matrices.


```
loop_
    _audit_link_block_code
        _audit_link_block_description
1997-07-24|LaSNbS2|G.M. |
        'common experimental and publication data'
1997-07-24|LaSNbS2|G.M.|_REFRNCE
            'reference structure (common data)'
1997-07-21|LaSNbS2|G.M. |_MOD
            'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M. |_REFRNCE_NbS2
            'reference structure (1st subsystem)'
            'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.| REFRNCE LaS
            'reference structure (2nd subsystem)'
1997-07-21|LLaSNbS2|G.M. |_MOD_LaS
    'modulated structure (2nd subsystem)'
loop_
        _atom_site_Fourier_wave_vector_seq_id
        _atom_site_Fourier_wave_vector_x
        _atom_site_Fourier_wave_vector_description
            1 0.568 'First harmonic'
            2 1.136 'Second harmonic'
loop_
    atom site displace Fourier id
    _atom_site_displace_Fourier_atom_site_label
    _atom_site_displace_Fourier_axis
    _atom_site_displace_Fourier_wave_vector_seq_id
                Mb1z1 
                Nb1x2 Nb1 
                Nb1y2 Nb1 y 
                Slx1 S1 
                Slm1 
                S1z2 S1 
loop_
    _atom_site_displace_Fourier_param_id
    _atom_site_displace_Fourier_param_cos
    _atom_site_displace_Fourier_param_sin
                Nb1z1 -0.0006(2) 0.
                Nb1x2 0. 0.0078(17)
                Nb1y2 -0.0014(7) 0.
                S1x1 0. -0.0134(85)
                S1y1 -0.0022(12) 0.
                S1z1 0.0014(14) 0.
                S1x2 0. -0.0129(27)
                S1y2 -0.0073(27) 0.
#### End of modulated structure first subsystem data ######
# Items concerning the modulated structure of the second
# subsystem
data_LaSNbS2_MOD_LaS
    _audit_block_code 1997-07-24|LaSNbS2|G.M.|_MOD_LaS
loop_
    __audit_link_block_code
            __audit_link_block_description
1997-\overline{07-24|L_LaSNbS2|G.M.|}
            'common experimental and publication data'
1997-07-24|LaSNbS2|G.M. |_REFRNCE
    'reference structure (common data)'
1997-07-21|LaSNbS2|G.M.|_MOD
            'modulated structure (common data)'
1997-07-24|LaSNbS2|G.M. |_REFRNCE_NbS2
    'reference structure (1st subsystem)'
1997-07-21|LaSNbS2|G.M. |_MOD_NbS2
    'modulated structure (1st subsystem)'
1997-07-24|LaSNbS2|G.M.|_REFRNCE_LaS
    'reference structure (2nd su
. 'modulated structure (2nd subsystem)'
```

```
loop_
    atom site Fourier wave vector seq id
    _atom_site_Fourier_wave_vector_x
    _atom_site_Fourier_wave_vector_z
    atom_site_Fourier_wave_vector_description
            M1 
loop_
    atom site_displace Fourier_id
    atom_site_displace_Fourier_atom_site_label
    _atom_site_displace_Fourier_axis
    _atom_site_displace_Fourier_wave_vector_seq_id
        La1x1 La1 - x - 
            La1y1 Lal y l
            La1z1 La1 z l
            La1x2 La1 x 2
            La1y2 La1 y y 
                La1z2 La1 z
                S2x1 s2 x m
                S2y1 S2 
                S2z1 S2 
                S2x2
loop_
    atom_site_displace_Fourier_param_id
    atom site displace Fourier param cos
    _atom_site_displace_Fourier_param_sin
        La1x1 0. -0.0010(22)
            La1y1 0.0174(4) 0.
            Lalz1 -0.0005(3) 0.
            La1x2 0. 0.0144(7)
            La1y2 0.0001(14) 0.
            La1z2 0.0008(3) 0.
            S2x1 0. 0.0059(70)
            S2y1 0.0081(16) 0.
            S2z1 0.0009(12) 0.
            S2x2 0. -0.0030(30)
            S2y2 0.0002(56) 0.
            S2z2 0.0007(10) 0.
```

\#\#\# End of modulated structure second subsystem data \#\#\#\#\#\#

Example 4 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 7584].
Note the entry from the ATOM_SITES_DISPLACE_FOURIER category to describe collec tive information relating to all the atom sites.

```
atom_sites_displace_Fourier_axes_description
```

; $\quad \mathrm{a} \overline{1}$ and $\overline{\mathrm{a}} 2$ are respectively the $\overline{\bar{l}}$ long molecular axis
and the axis normal to the mean molecular plane.
;
loop_
atom site displace Fourier id
atom_site_displace_Fourier_atom_site_label
atom_site_displace_Fourier_axis
atom site displace Fourier wave vector seq id
Byphenyl al 1 Biphenyl à 1
100p_
atom_site_displace_Fourier_param_id
_atom_site_displace_Fourier_param_modulus
_atom_site_displace_Fourier_param_phase
Byphenyl_a1_1 0.035(5) 0
_atom_site_displace_Fourier_param_cos (numb,su)
The displacive distortion of a given atom or rigid group (see
also _atom_site_rot_Fourier_param_cos) is usually parameter-
ized $\bar{b} y$ Fourier series. Each term of the series commonly adopts
two different representations: the sine-cosine form,

$$
A_{c} \cos (2 \pi \mathbf{k r})+A_{s} \sin (2 \pi \mathbf{k r}),
$$

and the modulus-argument form,

$$
|A| \cos (2 \pi \mathbf{k r}+\varphi)
$$

where \mathbf{k} is the wave vector of the term and \mathbf{r} is the atomic average position. _atom_site_displace_Fourier_param_cos is the cosine coefficient $\left(\bar{A}_{c}\right)$ corresponding to the Fourier term defined by _atom_site_displace_Fourier_atom_site_label, _atom_site_displace_Fourier_axis and _atom_site_ displace_Fourier_wave_vector_seq_id. Atomic or rigid-group displacements must be expressed as fractions of the unit cell or in ångströms if the modulations are referred to some special axes defined by _atom_sites_displace_Fourier_axes_description. Appears in list containing _atom_site_displace_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '
[atom site displace Fourier param]
_atom_site_displace_Fourier_param_id (char)
A code identifying the (in general complex) coefficient of each term present in the Fourier series describing the displacive modulation of a given atom or rigid group. In the case of a rigid group, it applies only to the translational part of the distortion. This code must match _atom_site_displace_Fourier_id.
Appears in list as essential element of loop structure. Must match parent data name _atom_site_displace_Fourier_id
[atom site displace Fourier param]

_atom_site_displace_Fourier_param_modulus

(numb, su)
The displacive distortion of a given atom or rigid group (see also _atom_site_rot_Fourier_param_modulus) is usually parameter$\overline{\text { ized by Fourier series. Each term of the series commonly adopts }}$ two different representations: the sine-cosine form,

$$
A_{c} \cos (2 \pi \mathbf{k r})+A_{s} \sin (2 \pi \mathbf{k r})
$$

and the modulus-argument form,

$$
|A| \cos (2 \pi \mathbf{k r}+\varphi)
$$

where \mathbf{k} is the wave vector of the term and \mathbf{r} is the atomic average position. _atom_site_displace_Fourier_param_modulus is the modulus ($|A|$) of the complex amplitude corresponding to the Fourier term defined by _atom_site_displace_ Fourier_atom_site_label, _atom_site_displace_Fourier_ axis and _atom_site_displace_Fourier_wave_ vector_seq_id. Atomic or rigid-group displacements must be expressed as fractions of the unit cell or in ångströms if the modulations are referred to some special axes defined by _atom_sites_displace_Fourier_axes_description.
Appears in list containing _atom_site_displace_Fourier_param_id.
The permitted range is $0.0 \rightarrow \infty$. Where no value is given, the assumed value is ' 0.0 '
[atom_site_displace_Fourier_param]
_atom_site_displace_Fourier_param_phase (numb, su) The displacive distortion of a given atom or rigid group (see also _atom_site_rot_Fourier_param_phase) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,

$$
A_{c} \cos (2 \pi \mathbf{k r})+A_{s} \sin (2 \pi \mathbf{k r})
$$

and the modulus-argument form,

$$
|A| \cos (2 \pi \mathbf{k r}+\varphi)
$$

where \mathbf{k} is the wave vector of the term and \mathbf{r} is the atomic average position. _atom_site_displace_Fourier_param_phase is the phase $(\varphi / 2 \pi)$ in cycles of the complex amplitude
corresponding to the Fourier term defined by _atom_site_ displace_Fourier_atom_site_label, _atom_site_displace_ Fourier_axis and _atom_site_displace_Fourier_wave_ vector_seq_id.
Appears in list containing _atom_site_displace_Fourier_param_id.
The permitted range is $-1.0 \rightarrow 1.0$. Where no value is given, the assumed value is ' 0.0 '.
[atom_site_displace_Fourier_param]
_atom_site_displace_Fourier_param_sin (numb,su) \bar{T} The displacive distortion of a given atom or rigid group (see also _atom_site_rot_Fourier_param_sin) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,

$$
A_{c} \cos (2 \pi \mathbf{k r})+A_{s} \sin (2 \pi \mathbf{k r})
$$

and the modulus-argument form,

$$
|A| \cos (2 \pi \mathbf{k r}+\varphi)
$$

where \mathbf{k} is the wave vector of the term and \mathbf{r} is the atomic average position. _atom_site_displace_Fourier_param_sin is the sine coefficient $\left(A_{s}\right)$ corresponding to the Fourier term defined by _atom_site_displace_Fourier_atom_site_label, _atom_site_displace_Fourier_axis and _atom_site_ displace_Fourier_wave_vector_seq_id. Atomic or rigid-group displacements must be expressed as fractions of the unit cell or in ångströms if the modulations are referred to some special axes defined by _atom_sites_displace_Fourier_axes_description. Appears in list containing_atom_site_displace_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '.
[atom_site_displace_Fourier_param]

ATOM_SITE_DISPLACE_SPECIAL_FUNC

Data items in the ATOM_SITE_DISPLACE_SPECIAL_FUNC category record details about the displacive modulation of an atom site in a modulated structure when it is not described by Fourier series. Special functions are effective in some cases where the modulations are highly anharmonic, since the number of parameters is drastically reduced. However, they are in general discontinuous or with discontinuous derivatives and therefore these functions describe an ideal situation that never occurs in a real modulated crystal. Up to now, only a few types of special functions have been used and all of them come from the JANA suite of programs. Although this approach is far from being general, it has the advantage that the functions are tightly defined and therefore the atomic displacements and occupations can be calculated easily. In this dictionary, only the special functions available in JANA2000 have been included. These are: (1) Sawtooth functions for atomic displacive modulation along x, y and z. (2) Crenel functions for the occupational modulation of atoms and rigid groups. Both of these only apply to one-dimensional modulated structures.
Example 1 - extracted from Gao, Coppens, Cox \& Moodenbaugh [Acta Cryst. (1993), A49, 141-148].

```
In this example the displacive modulation of the O(4)
atom was modelled using a sawtooth-shaped function.
loop_
    atom_site_displace_special_func_atom_site_label
    _atom_site_displace_special_func_sawtooth_ax
    _atom_site_displace_special_func_sawtooth_ay
    _atom_site_displace_special_func_sawtooth_az
    _atom_site_displace_special_func_sawtooth_c
    _atom_site_displace_special_func_sawtooth_w
        O(4) - 0. 270(6) 0.022(9) 0.014(2) 0.4\overline{2(2) 1.07(2)}
```

_atom_site_displace_special_func_atom_site_label (char)

The code that identifies an atom in a loop in which the special function that describes its displacive modulation is being defined. This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_label. Appears in list as essential element of loop structure. Must match parent data name _atom_site_label. [atom_site_displace_special_func]

```
_atom_site_displace_special_func_sawtooth_ax
__atom_site_displace_special_func_sawtooth_ay
__atom_site_displace_special_func_sawtooth_az
_atom_site_displace_special_func_sawtooth_c
atom_site_displace_special_func_sawtooth_w
``` (numb, su)
_atom_site_displace_special_func_sawtooth_ items are the \(\overline{\text { adjustable parameters }} \overline{\text { of }}\) a sawtooth function. A displacive sawtooth function along the internal space is defined as follows:
\[
u_{x}=2 a_{x}\left(\frac{x_{4}-c}{w}\right), \quad u_{y}=2 a_{y}\left(\frac{x_{4}-c}{w}\right), \quad u_{z}=2 a_{z}\left(\frac{x_{4}-c}{w}\right)
\]
for \(x_{4}\) belonging to the interval \([c-(w / 2), c+(w / 2)]\), where \(a_{x}\), \(a_{y}\) and \(a_{z}\) are the amplitudes (maximum displacements) along each crystallographic axis, \(w\) is its width, \(x_{4}\) is the internal coordinate and \(c\) is the centre of the function in internal space. \(u_{x}, u_{y}\) and \(u_{z}\) must be expressed in relative units. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petříc̆ek \& Dus̆ek, 2000).

Reference: Petříček, V. \& Dus̆ek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic.
Appears in list containing
_atom_site_displace_special_func_atom_site_label. Where no value is given, the assumed value is ' 0.0 '. [atom_site_displace_special_func]

\section*{ATOM_SITE_FOURIER_WAVE_VECTOR}

Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record details about the wave vectors of the Fourier terms used in the structural model.
Example 1 - based on the modulated structure of inorganic misfit layer \((\text { LaS })_{1.14} \mathrm{NbS}_{2}\) [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
loop_
_atom_site_Fourier_wave_vector_seq_id
_atom_site_Fourier_wave_vector_x
_atom_site_Fourier_wave_vector_description
10.568 'First harmonic'

\footnotetext{
_atom_site_Fourier_wave_vector_description (char) \(\overline{\mathrm{A}}\) description of the linear combination involved in a given Fourier wave vector used to describe the atomic modulation functions.
Appears in list containing _atom_site_Fourier_wave_vector_seq_id.
Example: ' \(q(4)=q(1)+q(2)\) '. [atom_site_Fourier_wave_vector]
}
_atom_site_Fourier_wave_vector_seq_id
\(\bar{A}\) numeric code identifying the wave vectors _atom_site_Fourier_wave_vector_.
Appears in list. May match child data name(s):
_atom_site_displace_Fourier_wave_vector_seq_id,
_atom_site_occ_Fourier_wave_vector_seq_id,
_atom_site_rot_Fourier_wave_vector_seq_id,
_atom_site_U_Fourier_wave_vector_seq_id.
[atom site Fourier wave vector]

\section*{_atom_site_Fourier_wave_vector_x _atom_site_Fourier_wave_vector_y \\ _atom_site_Fourier_wave_vector_z}
(numb) defined in

Wave vectors of the Fourier terms used in the structural model to describe the atomic modulation functions, expressed with respect to the three-dimensional reciprocal basis that spans the lattice of main reflections. They are linear combinations with integer coefficients of the independent wave vectors given in the _cell_wave_vector_ list. Therefore a generic Fourier wave vector is expressed as
\[
\mathbf{k}=n(1) \mathbf{q}(1)+\ldots+n(p) \mathbf{q}(p),
\]
where \(p\) is given by _cell_modulation_dimension. In the case of composites described in a single data block, these wave vectors are expressed with respect to the three-dimensional reciprocal basis of each subsystem (see _cell_subsystem_matrix_w_).
Appears in list containing _atom_site_Fourier_wave_vector_seq_id. Where no value is given, the assumed value is ' 0.0 '. [atom_site_Fourier_wave_vector]

\section*{ATOM_SITE_OCC_FOURIER}

Data items in the ATOM_SITE_OCC_FOURIER category record details about the Fourier components of the occupational modulation of the atom sites in a modulated structure. The (in general complex) coefficients of each Fourier component belong to the category ATOM_SITE_OCC_FOURIER_PARAM and are listed separately.

Example 1 - extracted from Madariaga, Zúñiga, Paciorek \& Bocanegra [Acta Cryst. (1990), B46, 620-628J.
loop_
_atom_site_occ_Fourier_id
_atom_site_occ_Fourier_atom_site_label
atom_site_occ_Fourier_wave_vector_seq_id
CuBr4_1 CuBr4 1
NC4_1_1 (NC4)1 1
NC4_2_1 (NC4)2 1
_atom_site_occ_Fourier_atom_site_label (char) Modulation parameters are usually looped in separate lists. Modulated parameters are the atom positions (displacive modulation), the atomic occupation (occupational modulation) and/or the atomic anisotropic (or isotropic) displacement parameters (referred to as modulation of thermal parameters, since the term 'displacement parameters' is ambiguous in this context). _atom_site_occ_Fourier_atom_site_label is the code that identifies an atom in a loop in which the Fourier components of its occupational modulation are listed. This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_label.
Appears in list. Must match parent data name _atom_site_label
[atom site occ Fourier]
_atom_site_occ_Fourier_id

\section*{cif_ms.dic}
\(\overline{\mathrm{A}}\) code identifying each component of the occupational modulation of a given atom or rigid group when the modulation is expressed in terms of Fourier series.
Appears in list as essential element of loop structure. May match child data name(s):

> _atom_site_occ_Fourier_param_id. [atom_site_occ_Fourier]
_atom_site_occ_Fourier_wave_vector_seq_id (numb) A numeric code identifying the wave vectors of the Fourier terms used in the structural model to describe the modulation functions corresponding to the occupational part of the distortion. This code must match _atom_site_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_occ_Fourier_id. Must match parent data name_atom_site_Fourier_wave_vector_seq_id.
[atom_site_occ_Fourier]

\section*{ATOM_SITE_OCC_FOURIER_PARAM}

Data items in the ATOM_SITE_OCC_FOURIER_PARAM category record details about the coefficients of the Fourier series used to describe the occupational modulation of the atom sites in a modulated structure. The Fourier components are defined in the category ATOM_SITE_OCC_FOURIER and are listed separately.
Example 1 - extracted from Madariaga, Zúñiga, Paciorek \& Bocanegra [Acta Cryst. (1990), B46, 620-628]
loop_
_atom_site_occ_Fourier_param_id
_atom_site_occ_Fourier_param_modulus
_atom_site_occ_Fourier_param_phase
CuBr4_1 0.397(11) 0.392(6)
NC4 1-1 \(0.216(42) \quad-0.047(33)\)
NC4_2_1 \(0.208(48) \quad 0.132(27)\)
_atom_site_occ_Fourier_param_cos
(numb, su)
The occupational distortion of a given atom or rigid group is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
P_{c} \cos (2 \pi \mathbf{k r})+P_{s} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
|P| \cos (2 \pi \mathbf{k r}+\delta)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_occ_Fourier_param_cos is the cosine coefficient \(\left(P_{c}\right)\) corresponding to the Fourier term defined by _atom_site_occ_Fourier_atom_site_label and _atom_site_occ_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_occ_Fourier_param_id. Where no value is
given, the assumed value is ' 0.0 '. \(\quad\) [atom_site_occ_Fourier_param]
_atom_site_occ_Fourier_param_id (char)
\(\overline{\mathrm{A}}\) code identifying the (in general complex) coefficient of each term present in the Fourier series describing the occupational modulation of a given atom or rigid group. This code must match
_atom_site_occ_Fourier_id.
Appears in list as essential element of loop structure. Must match parent data name
_atom_site_occ_Fourier_id. [atom_site_occ_Fourier_param]
_atom_site_occ_Fourier_param_modulus (numb, su) The occupational distortion of a given atom or rigid group is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
P_{c} \cos (2 \pi \mathbf{k} \mathbf{r})+P_{s} \sin (2 \pi \mathbf{k} \mathbf{r})
\]
and the modulus-argument form,
\[
|P| \cos (2 \pi \mathbf{k} \mathbf{r}+\delta)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_occ_Fourier_param_modulus is the modulus \((|P|)\) of the complex amplitude corresponding to the Fourier term defined by _atom_site_occ_Fourier_atom_site_label and _atom_site_occ_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_occ_Fourier_param_id.
The permitted range is \(0.0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0.0 '
[atom_site_occ_Fourier_param]
_atom_site_occ_Fourier_param_phase (numb, su)
The occupational distortion of a given atom or rigid group is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
P_{c} \cos (2 \pi \mathbf{k r})+P_{s} \sin (2 \pi \mathbf{k r}),
\]
and the modulus-argument form,
\[
|P| \cos (2 \pi \mathbf{k} \mathbf{r}+\delta)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_occ_Fourier_param_phase is the phase (\(\delta / 2 \pi\)) in cycles corresponding to the Fourier term defined by _atom_site_occ_Fourier_atom_site_label and _atom_site_ occ_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_occ_Fourier_param_id.
The permitted range is \(-1.0 \rightarrow 1.0\). Where no value is given, the assumed value is ' 0.0 '.
[atom_site_occ_Fourier_param]

\section*{ATOM_SITE_OCC_SPECIAL_FUNC}

Data items in the ATOM_SITE_OCC_SPECIAL_FUNC category record details about the occupational modulation of a given atom or rigid group in a modulated structure when it is not described by Fourier series. Special functions are effective in some cases where the modulations are highly anharmonic, since the number of parameters is drastically reduced. However, they are in general discontinuous or with discontinuous derivatives and therefore these functions describe an ideal situation that never occurs in a real modulated crystal. Up to now, only a few types of special functions have been used and all of them come from the JANA suite of programs. Although this approach is far from being general, it has the advantage that the functions are tightly defined and therefore the atomic displacements and occupations can be calculated easily. In this dictionary, only the special functions available in JANA2000 have been included. These are: (1) Sawtooth functions for atomic displacive modulation along \(x, y\) and z. (2) Crenel functions for the occupational modulation of atoms and rigid groups. Both of these only apply to one-dimensional modulated structures.

Example 1 - extracted from Elding-Pontén, Stenberg, Lidin, Madariaga \& PérezMato [Acta Cryst. (1997), B53, 364-372].
```


# In this example the occupational modulation of the Mn(2)

# atom was modelled using a square-wave crenel function.

loop_
_atom_site_occ_special_func_atom_site_label
_atom_site_occ_special_func_crenel_c
_atom_site_occ_special_func_crenel_w
Mn(2) 0.25 0.623(4)

```
_atom_site_occ_special_func_atom_site_label
(char)
The code that identifies an atom or rigid group in a loop in which the parameters of the special function that describes its occupational modulation are listed. This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_label.
Appears in list as essential element of loop structure. Must match parent data name
_atom_site_label. [atom_site_occ_special_func]
\[
\begin{aligned}
& \text { _atom_site_occ_special_func_crenel_c } \\
& \text {-atom_site_occ_special_func_crenel_w } \\
& \text { _atom_site_occ_special_func_crenel_items are the adjustable } \\
& \text { parameters of a crenel function. An occupational crenel function } \\
& \text { along the internal space is defined as follows: } \\
& \qquad p\left(x_{4}\right)=1 \text { if } x_{4} \text { belongs to the interval }[c-w / 2, c+w / 2] \\
& \quad p\left(x_{4}\right)=0 \text { if } x_{4} \text { is outside the interval }[c-w / 2, c+w / 2]
\end{aligned}
\]
where \(x_{4}\) is the internal coordinate, \(c\) is the centre of the function in internal space and \(w\) is its width. The use of this function is restricted to one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petříc̆ek \& Dus̆ek, 2000).

Reference: Petř́čček, V. \& Dus̆ek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic.
Appears in list containing_atom_site_occ_special_func_atom_site_label. Where no value is given, the assumed value is ' 0.0 '.
[atom_site_occ_special_func]

\section*{ATOM_SITE_PHASON}

Data items in the ATOM_SITE_PHASON category record details about the atomic phason correction. Although this kind of correction is intended to be overall, some refinement programs (for example, JANA2000) allow for this (theoretically dubious) atomdependent phason treatment.

\author{
_atom_site_phason_atom_site_label \\ (char)
}
\(\bar{T}\) The code that identifies \(\overline{\bar{a}}\) atom or rigid group in a loop in which the phason coefficients are listed. Although this kind of correction is intended to be overall, some refinement programs (for example, JANA2000) allow an independent phason correction for each atom or rigid group. In this case, _atom_site_phason_formula and _atom_site_phason_coeff should be used (see also _refine_ ls_mod_overall_phason_). This code must match the _atom_ site_label of the associated coordinate list and conform to the rules described in _atom_site_label.
Appears in list as essential element of loop structure. Must match parent data name _atom_site_label.
[atom_site_phason]

\section*{_atom_site_phason_coeff}
(numb, su)
The phason coefficient used to calculate (with the appropriate expression given in _atom_site_phason_formula) the atomic phason correction. Although this kind of correction is intended to be overall, some refinement programs (for example, JANA2000) allow an independent phason correction for each atom or rigid group. In this case, _atom_site_phason_formula and _atom_site_phason_coeff shōuld be used (see also _refine_ ls_mod_overall_phason_).
Appears in list containing _atom_site_phason_atom_site_label.
The permitted range is \(0.0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0.0 '.
[atom_site_phason]

\section*{_atom_site_phason_formula}
(char)
The formula used for the phason correction. Although both kinds of corrections are intended to be overall, some refinement programs (for example, JANA2000) allow an independent phason correction for each atom or rigid group. In this case, _atom_site_phason_formula and _atom_site_phason_coeff should be used (see also _refine_1s_mod_overall_phason_).
Appears in list containing _atom_site_phason_atom_site_label.
The data value must be one of the following:
Axe Axe, J. D. (1980). Phys. Rev. B, 21, 4181-4190.
Ovr Overhauser, A. W. (1971). Phys. Rev. B, 3, 3173-3182.
[atom_site_phason]

\section*{ATOM_SITE_ROT_FOURIER}

Data items in the ATOM_SITE_ROT_FOURIER category record details about the Fourier components present in the rotational part of the displacive modulation of a given rigid group. The translational part would appear in a separate list of items belonging to the ATOM_SITE_DISPLACE_FOURIER category. The (in general complex) coefficients of each Fourier component belong to the category ATOM_SITE_ROT_FOURIER_PARAM and are listed separately.

Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
loop_
_atom_site_rot_Fourier_id
_atom_site_rot_Fourier_atom_site_label
_atom_site_rot_Fourier_axis
_atom_site_rot_Fourier_wave_vector_seq_id
\begin{tabular}{llll}
\(\overline{S e O 4 _\bar{x}} 1\) & SeO4 & \(\mathbf{x}\) & \(\overline{1}\) \\
SeO4_y_1 & SeO4 & \(\mathbf{y}\) & \(\mathbf{1}\)
\end{tabular}

Example 2 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 75-
84].
Note the entry from the ATOM_SITES_ROT_FOURIER category to describe collective information relating to all the atom sites.
```

_atom_sites_rot_Fourier_axes_description

```
; a1 and a2 are respectively the long molecular axis
 and the axis normal to the mean molecular plane.
;
loop_
 _atom_site_rot_Fourier_id
 _atom_site_rot_Fourier_atom_site_label
 _atom_site_rot_Fourier_axis
 -atom_site_rot_Fourier_wave_vector_seq_id
 Ph1_a1_1 Phenyll a1 1
 Ph2_a1_1 Phenyl2 a1 1
 Bph_a2_1 Biphenyl a2 1
_atom_site_rot_Fourier_atom_site_label (char) Modulation parameters are usually looped in separate lists. Modulated parameters are the atom positions (displacive modulation), the atomic occupation (occupational modulation) and/or the atomic anisotropic (or isotropic) displacement parameters (referred to as modulation of thermal parameters, since the term 'displacement parameters' is ambiguous in this context). _atom_site_rot_Fourier_atom_site_label is the code that identifies a rigid group in a loop in which the Fourier components of the rotational part of its displacive modulation are listed. The translational part (if any) would appear in a separate list (see _atom_site_displace_Fourier_atom_site_label). This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_ label.
Appears in list containing _atom_site_rot_Fourier_id. Must match parent data name _atom_site_label.
[atom_site_rot_Fourier]

\section*{_atom_site_rot_Fourier_axis \\ (char)}
\(\overline{\text { A }}\) label identifying the rotation component around a fixed point of a given rigid group whose modulation is being parameterized by Fourier series. a, b and \(\mathbf{c}\) are the basic lattice vectors of the reference structure. For composites they refer to the reference structure of each subsystem. \(\mathbf{a}_{1}, \mathbf{a}_{2}\) and \(\mathbf{a}_{3}\) are defined by
_atom_sites_rot_Fourier_axes_description.
Appears in list containing _atom_site_rot_Fourier_id.
The data value must be one of the following: rotation around the \(a\) axis rotation around the \(b\) axis rotation around the \(c\) axis rotation around an arbitrary \(a_{1}\) axis rotation around an arbitrary \(a_{2}\) axis rotation around an arbitrary \(a_{3}\) axis
[atom_site_rot_Fourier]
_atom_site_rot_Fourier_id
(char)
\(\overline{\mathrm{A}}\) code \(\overline{\text { identifying }} \overline{\text { each component }}\) of a given rigid group when the modulation is expressed in terms of Fourier series.
Appears in list as essential element of loop structure. May match child data name(s):
_atom_site_rot_Fourier_param_id.
[atom_site_rot_Fourier]
_atom_site_rot_Fourier_wave_vector_seq_id (numb) A numeric code identifying the wave vectors of the Fourier terms used in the structural model to describe the modulation functions corresponding to the rotational distortion of a rigid group. This code must match _atom_site_Fourier_wave_vector_seq_id. Appears in list containing_atom_site_rot_Fourier_id. Must match parent data name _atom_site_Fourier_wave_vector_seq_id.
[atom_site_rot_Fourier]

\section*{ATOM_SITE_ROT_FOURIER_PARAM}

Data items in the ATOM_SITE_ROT_FOURIER_PARAM category record details about the coefficients of the Fourier series used to describe the rotational component of the displacive modulation of a given rigid group. The translational part would appear in a separate list of items belonging to the ATOM_SITE_DISPLACE_FOURIER_PARAM category. The Fourier components are defined in the category ATOM_SITE_ROT_FOURIER and are listed separately.
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
loop_
_atom_site_rot_Fourier_param_id
_atom_site_rot_Fourier_param_cos
_atom_site_rot_Fourier_param_sin
SeO4_x_1 -4.2(1) 0.91(3) SeO4_Y_1 \(4.3(1) \quad 0\).
Example 2 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 7584].
Note the entry from the ATOM_SITES_ROT_FOURIER category to describe collective information relating to all the atom sites.
```

_atom_sites_rot_Fourier_axes_description

```
 ; a1 and a2 are respectively the long molecular axis
 and the axis normal to the mean molecular plane.
;
loop_
 _atom_site_rot_Fourier_param_id
 _atom_site_rot_Fourier_param_modulus
 _atom_site_rot_Fourier_param_phase
 Ph1_a1_1 \(11.0(2) \quad 0\).
 Ph2_a1_1 11.0(2) 0.5
 Bph_a2_1 \(1.0(1) \quad 0.25\)

\section*{_atom_site_rot_Fourier_param_cos}
(numb, su)
The displacive distortion of a given rigid group is not completely described by _atom_site_displace_Fourier_. The rigid rotation of the group around a given axis passing through a fixed point (for example, the centre of mass of the group) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
R_{c} \cos (2 \pi \mathbf{k r})+R_{s} \sin (2 \pi \mathbf{k} \mathbf{r})
\]
and the modulus-argument form,
\[
|R| \cos (2 \pi \mathbf{k r}+\psi),
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_rot_Fourier_param_cos is the cosine coefficient \(\left(R_{c}\right)\) in degrees corresponding to the Fourier term defined by _atom_site_rot_Fourier_atom_site_label, _atom_site_rot_Fourier_axis and _atom_site_rot_ Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_rot_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '. [atom_site_rot_Fourier_param]
atom_site_rot_Fourier_param_id
(char)
\(\overline{\mathrm{A}}\) code identifying \(\overline{\text { the }}\) (in general complex) coefficient of each term present in the Fourier series describing the rotational part of the displacive modulation of a given rigid group. This code must match _atom_site_rot_Fourier_id.
Appears in list as essential element of loop structure. Must match parent data name
_atom_site_rot_Fourier_id.
[atom_site_rot_Fourier_param]
_atom_site_rot_Fourier_param_modulus (numb, su) The displacive distortion of a given rigid group is not completely described by _atom_site_displace_Fourier_. The rigid rotation of the group around a given axis passing through a fixed point (for example, the centre of mass of the group) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
R_{c} \cos (2 \pi \mathbf{k r})+R_{s} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
|R| \cos (2 \pi \mathbf{k r}+\psi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_rot_Fourier_param_modulus is the modulus \((|R| \overline{)}\) in degrees of the complex amplitude corresponding to the Fourier term defined by _atom_site_rot_Fourier_atom_site_label, _atom_site_rot_ Fourier_axis and _atom_site_rot_Fourier_wave_vector_ seq_id.
Appears in list containing _atom_site_rot_Fourier_param_id.
The permitted range is \(0.0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0.0 '
[atom_site_rot_Fourier_param]

\section*{_atom_site_rot_Fourier_param_phase (numb, su)}

The displacive distortion of a given rigid group is not completely described by _atom_site_displace_Fourier_. The rigid rotation of the group around a given axis passing through a fixed point (for example, the centre of mass of the group) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
R_{c} \cos (2 \pi \mathbf{k r})+R_{s} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
|R| \cos (2 \pi \mathbf{k r}+\psi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_rot_Fourier_param_phase is the phase \((\psi / 2 \pi)\) in cycles of the complex amplitude corresponding to the Fourier term defined by _atom_site_rot_ Fourier_atom_site_label, _atom_site_rot_Fourier_axis and _atom_site_rot_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_rot_Fourier_param_id.
The permitted range is \(-1.0 \rightarrow 1.0\). Where no value is given, the assumed value is ' 0.0 '. [atom_site_rot_Fourier_param]

\author{
_atom_site_rot_Fourier_param_sin
}

The displacive distortion of a given rigid group is not completely described by _atom_site_displace_Fourier_. The rigid rotation of the group around a given axis passing through a fixed point (for example, the centre of mass of the group) is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
R_{c} \cos (2 \pi \mathbf{k r})+R_{s} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
|R| \cos (2 \pi \mathbf{k} \mathbf{r}+\psi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_rot_Fourier_param_sin is the sine coefficient \(\left(\overline{R_{S}}\right)\) in degrees corresponding to the Fourier term defined by _atom_site_rot_Fourier_atom_site_label, _atom_site_rot_Fourier_axis \({ }^{-}\)and _atom_site_rot_Fourier_ wave_vector_seq_id.
Appears in list containing_atom_site_rot_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '. [atom_site_rot_Fourier_param]

\section*{ATOM_SITE_U_FOURIER}

Data items in the ATOM_SITE_U_FOURIER category record details about the Fourier components describing the modulation of the atomic thermal parameters in a modulated structure.
```

Example 1- extracted from Meyer, Paciorek, Schenk, Chapuis \& Depmeier [Acta
Cryst. (1994), B50, 333-343].
loop_
_atom_site_U_Fourier_id
atom_site_U_Fourier_atom_site_label
_atom_site_U_Fourier_tens_elem
_atom_site_U_Fourier_wave_vector_seq_id
Mn_U1\overline{1_2}}\quad\textrm{Mn}\mathrm{ U11 2
Mn U22 2 Mn U22 2
Mn U33 2 Mn U33 2
Mn_U12_2 Mn U12 2
Mn_U13_2 Mn U13 2
Mn_U23_2 Mn U23 2
Cl1__U11_2 Cl1 U11 2
Cl1_U22_2 Cl1 U22 2
Cl1_U33_2 Cl1 U33 2
Cl1_U12_2 Cl1 U12 2
Cl1_U13_2 Cl1 U13 2
Cl1_U23_2 Cl1 U23 2

# - - - - data truncated for brevity - - - -

```

\section*{_atom_site_U_Fourier_atom_site_label (char)}

Modulation parameters are usually looped in separate lists. Modulated parameters are the atom positions (displacive modulation), the atomic occupation (occupational modulation) and/or the atomic anisotropic (or isotropic) displacement parameters (referred to as modulation of thermal parameters, since the term 'displacement parameters' is ambiguous in this context). _atom_site_U_Fourier_atom_site_label is the code that identifies an atom in a loop in which the Fourier components of its thermal-parameters modulation are listed. This code must match the _atom_site_label of the associated coordinate list and conform to the rules described in _atom_site_label.
Appears in list containing _atom_site_U_Fourier_id. Must match parent data name _atom_site_label.
[atom site U Fourier]
_atom_site_U_Fourier_id
cif_ms.dic

A code identifying each Fourier component used to des modulation of the atomic thermal parameters.
Appears in list as essential element of loop structure. May match child data name(s):
_atom_site_U_Fourier_param_id. [atom_site_U_Fourier]
_atom_site_U_Fourier_tens_elem (char)
A label identifying the temperature tensor element \(U^{i j}\) of a given atom or rigid group whose modulation is being parameterized by Fourier series.
```

Appears in list containing _atom_site_U_Fourier_id.
The data value must be one of the following:
U11 modulation of $U^{11}$
U12 modulation of $U^{12}$
U13 modulation of $U^{13}$
U22 modulation of $U^{22}$
U23 modulation of $U^{23}$
U33 modulation of $U^{33}$
Uiso modulation of $U_{\text {isotropic }}$

```
_atom_site_U_Fourier_wave_vector_seq_id (numb)
A numeric code identifying the wave vectors of the Fourier terms used to describe the modulation functions corresponding to the temperature factors of an atom or rigid group. This code must match _atom_site_Fourier_wave_vector_seq_id.
Appears in list containing _atom_site_U_Fourier_id. Must match parent data name
_atom_site_Fourier_wave_vector_seq_id. [atom_site_U_Fourier]

\section*{ATOM_SITE_U_FOURIER_PARAM}

Data items in the ATOM_SITE_U_FOURIER_PARAM category record details about the coefficients of the Fourier series used to describe the modulation of the atomic thermal parameters in a modulated structure. The Fourier components are defined in the category ATOM_SITE_U_FOURIER and are listed separately.
Example 1 - extracted from Meyer, Paciorek, Schenk, Chapuis \& Depmeier [Acta Cryst. (1994), B50, 333-343].
loop_
atom site U Fourier param id
_atom_site_U_Fourier_param_modulus
_atom_site_U_Fourier_param_phase
Mn_U11_2 \(0.003(3) \quad 0.0\)
\(\begin{array}{lll}\mathrm{Mn} \text { _U22_2 } & 0.0 & 0.0\end{array}\)
Mn_U33_2 \(0.017(2) \quad 0.0\)
\(\begin{array}{lll}M n _U 12 _2 & 0.0 & 0.0\end{array}\)
Mn_U13_2 \(0.00(2) \quad 0.5\)
\(\begin{array}{lll}M n _U 23 _2 & 0.0 & 0.0\end{array}\)
Cl1_U11_2 \(0.003(3) \quad 0.5\)
Cl1_U22_2 \(0.005(3) \quad 0.0\)
Cl1_U33_2 0.020(3) 0.0
Cl1_U12_2 0.008(3) 0.0
Cl1_U13_2 \(0.02(2) \quad 0.75\)
Cl1_U23_2 \(0.03(3) \quad 0.25\)
\# - - - - data truncated for brevity - - -
_atom_site_U_Fourier_param_cos
(numb, su)
The modulation of the atomic thermal parameters is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
U_{c}^{i j} \cos (2 \pi \mathbf{k} \mathbf{r})+U_{s}^{i j} \sin (2 \pi \mathbf{k} \mathbf{r})
\]
and the modulus-argument form,
\[
\left|U^{i j}\right| \cos (2 \pi \mathbf{k} \mathbf{r}+\chi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_U_Fourier_param_cos is the cosine coefficient \(U_{c}^{i \bar{j}}\), in ångströms squared, corresponding to the Fourier term defined by _atom_site_U_Fourier_atom_site_label, _atom_site_U_Fourier_tens_elem and _atom_site_U_Fourier_ wave_vector_seq_id.
Appears in list containing _atom_site_U_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '. [atom_site_U_Fourier_param]

\section*{_atom_site_U_Fourier_param_id}
(char)
\(\overline{\mathrm{A}}\) code identifying the (in general complex) coefficient of each term present in the Fourier series describing the modulation of the atomic thermal parameters. This code must match

\section*{_atom_site_U_Fourier_id.}

Appears in list as essential element of loop structure. Must match parent data name
_atom_site_U_Fourier_id. [atom_site_U_Fourier_param]

\section*{atom_site_U_Fourier_param_modulus}
(numb, su)
The modulation of the atomic thermal parameters is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
U_{c}^{i j} \cos (2 \pi \mathbf{k r})+U_{s}^{i j} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
\left|U^{i j}\right| \cos (2 \pi \mathbf{k r}+\chi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position._atom_site_U_Fourier_param_modulus is the modulus \(\left|U^{i j}\right|\), in ångströms squared, of the complex amplitudes corresponding to the Fourier term defined by _atom_site_U_Fourier_atom_site_label, _atom_site_U_Fourier_tens_elem and _atom_site_U_Fourier_ wave_vector_seq_id.
Appears in list containing_atom_site_U_Fourier_param_id.
The permitted range is \(0.0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0.0 '.
[atom_site_U_Fourier_param]
_atom_site_U_Fourier_param_phase (numb, su)
The modulation of the atomic thermal parameters is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
U_{c}^{i j} \cos (2 \pi \mathbf{k r})+U_{s}^{i j} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
\left|U^{i j}\right| \cos (2 \pi \mathbf{k r}+\chi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_U_Fourier_param_phase is the phase (\(\chi / 2 \pi\)) in cycles of the complex amplitude corresponding to the Fourier term defined by _atom_site_u_ Fourier_atom_site_label, _atom_site_U_Fourier_tens_elem and _atom_site_U_Fourier_wave_vector_seq_id.
Appears in list containing_atom_site_U_Fourier_param_id.
The permitted range is \(-1.0 \rightarrow 1.0\). Where no value is given, the assumed value is ' 0.0 '.
[atom_site_U_Fourier_param]

\section*{_atom_site_U_Fourier_param_sin}
(numb, su) The modulation of the atomic thermal parameters is usually parameterized by Fourier series. Each term of the series commonly adopts two different representations: the sine-cosine form,
\[
U_{c}^{i j} \cos (2 \pi \mathbf{k r})+U_{s}^{i j} \sin (2 \pi \mathbf{k r})
\]
and the modulus-argument form,
\[
\left|U^{i j}\right| \cos (2 \pi \mathbf{k r}+\chi)
\]
where \(\mathbf{k}\) is the wave vector of the term and \(\mathbf{r}\) is the atomic average position. _atom_site_U_Fourier_param_sin is the sine coefficient \(U_{s}^{i j}\), in ångströms squared, corresponding to the Fourier term defined by _atom_site_U_Fourier_atom_site_label, _atom_site_U_Fourier_tens_elem and _atom_site_U_Fourier_ wave_vector_seq_id.
Appears in list containing _atom_site_U_Fourier_param_id. Where no value is given, the assumed value is ' 0.0 '. [atom_site_U_Fourier_param]

\section*{ATOM_SITES_DISPLACE_FOURIER}

Data items in the ATOM_SITES_DISPLACE_FOURIER category record details common to the displacive modulation of atom sites in a modulated structure. Details for individual atom sites are described by data items in the ATOM_SITE_DISPLACE_FOURIER category.

Example 1 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 7584].
_atom_sites_displace_Fourier_axes_description
a1 and a2 are respectively the long molecular axis and the axis normal to the mean molecular plane.
;

\section*{_atom_sites_displace_Fourier_axes_description}
(char)

The definition of the axes used for describing the displacive modulation, parameterized by Fourier series, when they are other than the crystallographic axes.
Example:
; a1 and a2 are respectively the long molecular axis
and the axis normal to the mean molecular plane.
[atom_sites_displace_Fourier]

\section*{ATOM_SITES_MODULATION}

Data items in the ATOM_SITES_MODULATION category record details common to the modulation of atom sites in a modulated structure.
```

_atom_sites_modulation_global_phase_t_1
_atom_sites_modulation_global_phase_t__2
_atom_sites_modulation_global_phase_t_3
_atom_sites_modulation_global_phase_t_4
_atom_sites_modulation_global_phase_t_5
atom_sites_modulation_global_phase_t_6
_atom_sites_modulation_global_phase_t_7
_atom_sites_modulation_global_phase_t_8 (numb)

```

The initial phases, in cycles, of the modulation waves. For incommensurate structures they are irrelevant. However, they are essential for the description of commensurate structures within the superspace formalism, since they determine the space group of the commensurate superstructure [see Perez-Mato, Madariaga, Zuñiga \& Garcia Arribas (1987) or van Smaalen (1995)]. Note that for composites described using a single data block, the initial phases for each subsystem are derived using the \(W\) matrices (see _cell_subsystem_matrix_w_) from a unique set of global phases whose values are assigned to _atom_sites_modulation_ global_phase_t_. Detailed information can be found in van Smaalen (1995).

References: Perez-Mato, J. M., Madariaga, G., Zuñiga, F. J. \& Garcia Arribas, A. (1987). Acta Cryst. A43, 216-226. Smaalen, S. van (1995). Crystallogr. Rev. 4, 79-202.
The permitted range is \(-1.0 \rightarrow 1.0\). Where no value is given, the assumed value is ' 0.0 '.
[atom_sites_modulation]

\section*{ATOM_SITES_ROT_FOURIER}

Data items in the ATOM_SITES_ROT_FOURIER category record details about the rotational component of the displacive modulation of a given rigid group as a whole. Details for individual atom sites are described by data items in the ATOM_SITES_ROT_FOURIER category.
Example 1 - extracted from Baudour \& Sanquer [Acta Cryst. (1983), B39, 7584].
```

_atom_sites_rot_Fourier_axes_description
; a1 and a2 are respectively the long molecular axis
and the axis normal to the mean molecular plane.

```
;
_atom_sites_rot_Fourier_axes_description (char) The definition of the axes used for describing the rotational part of the displacive modulation of a given rigid group, parameterized by Fourier series, when they are other than the crystallographic axes. Example:
; al and a2 are respectively the long molecular axis and the axis normal to the mean molecular plane.
[atom_sites_rot_Fourier]

\section*{AUDIT_LINK}

This category description does not introduce a new category; instead, it describes the recommended practice for using block codes as described in the core AUDIT_LINK category for descriptions of modulated structures. The value of _audit_block_code may be associated with a data block in the same file or in a different file related to the current data block. The value of _audit_block_code should be unique.
It is recommended that data blocks are named as follows:
\(<\) string \(>\) : The name of the data block containing those items that, for a particular material, are independent of the specific structure (modulated, reference etc.). For example, the experimental set-up or publication details would be described here.
<string>_REFRNCE: The name of the data block that contains specific details of the reference (unmodulated) structure if it was refined separately using only main reflections. In the case of composites, this data block may contain those items that are common to the reference structures of all subsystems.
\(<\) string \(>\) _MOD: The name of the data block in which specific details of the modulated structure are given. In the case of composites, this data block may include either those items that are common to the modulated structures of all subsystems or the whole modulated structure if it is described implicitly through the *_subsystem_code pointers.

A trailing code following the reserved words MOD or REFRNCE indicates that the corresponding data block includes structural information corresponding to the modulated or reference structures of the subsystem labelled by _cell_subsystem code. A recommended format for \(\langle\) string \(\rangle\) is given in the definitions of PD_BLOCK and _pd_block_id in the dictionary extension cif_pd.dic (Chapter 4.2).

Example 1 - example file for the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).

\section*{loop}
_audit_link_block_code
_audit_link_block_description
'publication details'
K2SEO4_COM 'experimental data common to ref./mod. structures' K2SEO4_REFRNCE 'reference structure'
K2SEO4 MOD 'modulated structure'

Example 2 - example with a trailing string referencing a modulated structure of the subsystem labelled by _cell_subsystem_code.
_audit_link_block_code 'PbSVS2_MOD_VS2'

\section*{CELL}

Data items in the CELL category record details about the crystallographic cell parameters and their measurement. This category is already defined in the core CIF dictionary but is extended in this dictionary by the addition of some items that are specific for modulated and composite structures.
_cell_modulation_dimension

\section*{(numb)}

Number of additional reciprocal vectors needed to index the whole diffraction pattern using integer Miller indices.
The permitted range is \(1 \rightarrow 8\).
[cell]

\section*{_cell_reciprocal_basis_description (char)}

Definition of the higher-dimensional basis with respect to which the Miller indices are defined. The three-dimensional basis used to index the additional wave vectors should be clearly indicated.
Examples:
; \(a^{*}, \mathrm{~b} *, \mathrm{c} *\) (reciprocal basis spanning the lattice of main
reflections) and \(q\) (incommensurate with respect to \(a^{*}, b^{*}, c^{*}\))
; (Typical choice for a one-dimensional incommensurate structure.)
; The diffraction pattern can be indexed with four integers
based on the reciprocal vectors \(a^{* \sim} 1^{\sim}=a * \sim 11^{\sim}, ~ a * \sim 2^{\sim}=a *^{\sim} 12^{\sim}\),
 main reflections of the 1st subsystem. \(a^{* \sim} 21^{\sim}\) is incommensurate with \(a^{* \sim 11 ~ . ~}\)
; (Common choice for a misfit layer compound composed of two subsystems that have in common two reciprocal vectors. Extracted from van Smaalen [Crystallogr: Rev. (1995), 4, 79-202].)

\section*{CELL_SUBSYSTEM}

Data items in the CELL_SUBSYSTEM category record details about the crystallographic cell parameters of each subsystem present in a composite.
Example 1 - based on the modulated structure of inorganic misfit layer \((\text { LaS })_{1.14}\) NbS 2 [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
\[
\begin{aligned}
& \text { _cell_subsystems_number } \\
& 2 \\
& \text { loop_ } \\
& \text { _cell_subsystem_code } \\
& \text { _cell_subsystem_description } \\
& \text { _cell_subsystem_matrix_W_1_1 } \\
& \text { _cell_subsystem_matrix_W_1_4 } \\
& \text { _cell_subsystem_matrix_W_2_2 } \\
& \text { _cell_subsystem_matrix_W_3_3 } \\
& \text { _cell_subsystem_matrix_W_4_-1 } \\
& \text { _cell_subsystem_matrix_W_4_4 } \\
& \text { NbS2 '1st subsystem' } 101101 \\
& \text { Las '2nd subsystem' } 0 \begin{array}{llllll}
1 & 1 & 1 & 1 & 0
\end{array}
\end{aligned}
\]

\section*{cell subsystem code}

The code identifying uniquely a certain composite subsystem. This code is used to identify the data blocks that contain the structural information associated with the subsystem.
Appears in list.
Example: ' Nb S2'.
cell_subsystem_description
(char)
Description of each subsystem defining a composite structurally. The number of definitions must match the number given in _cell_subsystems_number.
Appears in list.
Example: 'NbS2 part of the layer compound (LaS) \(\sim 1.14 \sim\) NbS \(\sim 2 \sim\) '.
[cell_subsystem]
_cell_subsystem_matrix_W_1_1 _cell_subsystem_matrix_W_1_-2
_cell_subsystem_matrix_W_1_3
_cell_subsystem_matrix_W_1_4
_cell_subsystem_matrix_W_1_5
_cell_subsystem_matrix_W_1_6
_cell_subsystem_matrix_W_1_7
_cell_subsystem_matrix_W_1_8
_cell_subsystem_matrix_W_1_9
_cell_subsystem_matrix_W_1_10
_cell_subsystem_matrix_W_1_11
_cell_subsystem_matrix_W_2_1
_cell_subsystem_matrix_W_2_2
_cell_subsystem_matrix_W_2_-3
_cell_subsystem_matrix_W_2_4
_cell_subsystem_matrix_W_2_5
_cell_subsystem_matrix_W_2_6
_cell_subsystem_matrix_W_2_7
_cell_subsystem_matrix_W_2_8
_cell_subsystem_matrix_W_2_9
_cell_subsystem_matrix_W_2_10
_cell_subsystem_matrix_W_2_11
_cell_subsystem_matrix_W_3_1
_cell_subsystem_matrix_W_3_2
_cell_subsystem_matrix_W_3_3
_cell_subsystem_matrix_W_3_-4
_cell_subsystem_matrix_W_3_5
_cell_subsystem_matrix_W_3_-6
_cell_subsystem_matrix_W_3_7
_cell_subsystem_matrix_W_3_8
_cell_subsystem_matrix_W_3_9
_cell_subsystem_matrix_W_3_10
_cell_subsystem_matrix_W_-3_11
_cell_subsystem_matrix_W_4_1
_cell_subsystem_matrix_W_4_2
_cell_subsystem_matrix_W_4_3
_cell_subsystem_matrix_W_4_-4
_cell_subsystem_matrix_W_4_5
_cell_subsystem_matrix_W_4_-6
_cell_subsystem_matrix_W_4_7
_cell_subsystem_matrix_W_4_-8
_cell_subsystem_matrix_W_4_9
_cell_subsystem_matrix_W_4_10
_cell_subsystem_matrix_W_4_11
_cell_subsystem_matrix_W_5_1
_cell_subsystem_matrix_W_5_2
_cell_subsystem_matrix_W_5_3
_cell_subsystem_matrix_W_5_4
_cell_subsystem_matrix_W_5_5
_cell_subsystem_matrix_W_5_-6
_cell_subsystem_matrix_W_5_7
_cell_subsystem_matrix_W_5_8
_cell_subsystem_matrix_W_5_9
_cell_subsystem_matrix_W_5_10
_cell_subsystem_matrix_W_5_11
_cell_subsystem_matrix_W_6_1
_cell_subsystem_matrix_W_6_2
_cell_subsystem_matrix_W_6_3
_cell_subsystem_matrix_W_6_4
_cell_subsystem_matrix_W_6_5
_cell_subsystem_matrix_W_6_6
_cell_subsystem_matrix_W_6-7
_cell_subsystem_matrix_W_6_-8
_cell_subsystem_matrix_W_6_9
_cell_subsystem_matrix_W_6_-10
_cell_subsystem_matrix_W_6_11
_cell_subsystem_matrix_W_7_1
_cell_subsystem_matrix_W_7-2
_cell_subsystem_matrix_W_7_3
_cell_subsystem_matrix_W_7_4
_cell_subsystem_matrix_W-7-7 5
_cell_subsystem_matrix_W_7_6
_cell_subsystem_matrix_W_7_7
_cell_subsystem_matrix_W_7-7
_cell_subsystem_matrix_W_7_9
_cell_subsystem_matrix_W_7_10
_cell_subsystem_matrix_W_7_11
_cell_subsystem_matrix_W_8_1
_cell_subsystem_matrix_W_8_2
_cell_subsystem_matrix_W_8_3
_cell_subsystem_matrix_W_8_4
_cell_subsystem_matrix_W_8_5
_cell_subsystem_matrix_W_8_6
_cell_subsystem_matrix_W_8_7
_cell_subsystem_matrix_W_8_-8
_cell_subsystem_matrix_W_8_9
_cell_subsystem_matrix_W_8_-10
_cell_subsystem_matrix_W_8_11
_cell_subsystem_matrix_W_9_1
_cell_subsystem_matrix_W_9_2
_cell_subsystem_matrix_W_9_3
cell_subsystem_matrix_W_9_4
_cell_subsystem_matrix_W_9_5
_cell_subsystem_matrix_W_9_6
_cell_subsystem_matrix_W_9_7
_cell_subsystem_matrix_W_9_8
_cell_subsystem_matrix_W_9_9
_cell_subsystem_matrix_W_9_10
_cell_subsystem_matrix_W_9_11
_cell_subsystem_matrix_W_10_1
_cell_subsystem_matrix_W_-10_2
_cell_subsystem_matrix_W_10_3
_cell_subsystem_matrix_W-10_- 4
_cell_subsystem_matrix_W_10_5
_cell_subsystem_matrix_W_10_6
_cell_subsystem_matrix_W_10_7
_cell_subsystem_matrix_W_10_-8
_cell_subsystem_matrix_W_10_9
_cell_subsystem_matrix_-W_10_-10
_cell_subsystem_matrix_W_10_11
_cell_subsystem_matrix_W_11_1
_cell_subsystem_matrix_W_11_2
_cell_subsystem_matrix_W_11_3
_cell_subsystem_matrix_W_11_4
_cell_subsystem_matrix_W-11_5
_cell_subsystem_matrix_W_11_6
_cell_subsystem_matrix_W_11_7
_cell_subsystem_matrix_W_11_8
_cell_subsystem_matrix_W_11_9
_cell_subsystem_matrix_-W_11_10
_cell_subsystem_matrix_W_11_11
(numb)
In the case of composites, for each subsystem the matrix \(W\) as defined in van Smaalen (1991); see also van Smaalen (1995). Its dimension must match (_cell_modulation_dimension +3) \(\times\) (_cell_modulation_dimension +3).
Intergrowth compounds are composed of several periodic substructures in which the reciprocal lattices of two different subsystems are incommensurate in at least one direction. The index-
ing of the whole diffraction diagram with integer indices requires more than three reciprocal basic vectors. However, the distinction between main reflections and satellites is not as obvious as in normal incommensurate structures. Indeed, true satellites are normally difficult to locate for composites and the modulation wave vectors are reciprocal vectors of the other subsystem(s) referred to the reciprocal basis of one of them. The choice of the enlarged reciprocal basis \(\left\{\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{d}\right\}\) is completely arbitrary, but the reciprocal basis of each subsystem is always known through the \(W\) matrices. These matrices \([(3+d) \times(3+d)\) dimensional], one for each subsystem, can be blocked as follows:
\[
W^{\nu}=\left(\begin{array}{ll}
Z_{3}^{\nu} & Z_{d}^{\nu} \\
V_{3}^{\nu} & V_{d}^{\nu}
\end{array}\right)
\]
the dimension of each block being \((3 \times 3),(3 \times d),(d \times 3)\) and \((d \times d)\) for \(Z_{3}^{\nu}, Z_{d}^{\nu}, V_{3}^{\nu}\) and \(V_{d}^{\nu}\), respectively. For example, \(Z^{\nu}\) expresses the reciprocal basis of each subsystem in terms of the basis \(\left\{\mathbf{a}^{*}, \mathbf{b}^{*}, \mathbf{c}^{*}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{d}\right\} . W^{\nu}\) also gives the irrational components of the modulation wave vectors of each subsystem in its own three-dimensional reciprocal basis \(\left\{\mathbf{a}_{\nu}^{*}, \mathbf{b}_{\nu}^{*}, \mathbf{c}_{\nu}^{*}\right\}\) and the superspace group of a given subsystem from the unique superspace group of the composite. The structure of these materials is always described by a set of incommensurate structures, one for each subsystem. The atomic coordinates, modulation parameters and wave vectors used for describing the modulation(s) are always referred to the (direct or reciprocal) basis of each particular subsystem. Although expressing the structural results in the chosen common basis is possible (using the matrices \(W\)), it is less confusing to use this alternative description. Atomic coordinates are only referred to a common basis when interatomic distances are calculated. Usually, the reciprocal vectors \(\left\{\mathbf{a}^{*}, \mathbf{b}^{*}\right.\) and \(\left.\mathbf{c}^{*}\right\}\) span the lattice of main reflections of one of the subsystems and therefore its \(W\) matrix is the unit matrix. For composites described in a single data block using *_subsystem_code pointers, the cell parameters, the superspace group and the measured modulation wave vectors (see CELL_WAVE_VECTOR below) correspond to the reciprocal basis described in _cell_reciprocal_basis_description and coincide with the reciprocal basis of the specific subsystem (if any) whose \(W\) matrix is the unit matrix. The cell parameters and the symmetry of the remaining subsystems can be derived using the appropriate \(W\) matrices. In any case (single or multiblock CIF), the values assigned to the items describing the atomic parameters (including the wave vectors used to describe the modulations) are always the same and are referred to the basis of each particular subsystem. Such a basis will be explicitly given in a multiblock CIF or should be calculated (with the appropriate \(W\) matrix) in the case of a single block description of the composite.
References: Smaalen, S. van (1991). Phys. Rev. B, 43, 1133011341. Smaalen, S. van (1995). Crystallogr. Rev. 4, 79-202.

Appears in list containing _cell_subsystem_code. Where no value is given, the assumed value is ' 0 '.
[cell_subsystem]

\section*{CELL_SUBSYSTEMS}

Data items in the CELL_SUBSYSTEMS category describe the gross structure of the subsystems present in a composite.
\(\overline{\text { Example } 1 \text { - based on the modulated structure of inorganic misfit layer }}\) \((\text { LaS })_{1.14} N b S_{2}\) [Smaalen, S. van (1991). J. Phys. Condens. Matter, 3, 12471263].
cell_subsystems_number 2
_cell_subsystems_number
(numb)
\(\bar{T}\) The number of subsystems used to define the structural model of a composite structure.
The permitted range is \(2 \rightarrow \infty\).
[cell subsystems]

\section*{CELL_WAVE_VECTOR}

Data items in the CELL_WAVE_VECTOR category list the independent modulation wave vectors \(\mathbf{q}_{i}\). The diffraction vectors are indexed in the form \(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+\sum_{i}\left(m_{i} \mathbf{q}_{i}\right)\). \(\sum_{i}\) is taken over all wave vectors. In this version of the dictionary, the index \(i\) has been restricted to be less than 9 .
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
loop_
_cell_wave_vector_seq_id
_cell_wave_vector_x
\(10.318(5)\)
_cell_wave_vector_seq_id (numb)
\(\overline{\mathrm{A}}\) numeric code to identify each independent wave vector. These codes define uniquely the reciprocal basis and, therefore, force the order of the Miller indices assigned to intensities, crystal faces etc. Appears in list.
[cell_wave_vector]

\section*{_cell_wave_vector_x _cell_wave_vector_y}
_cell_wave_vector_z (numb, su)
Independent modulation wave vector(s) with which the whole diffraction pattern is indexed, expressed as fractions of the three reciprocal basis vectors of the reference structure. In the case of composites, the modulation wave vectors of each subsystem are expressed in terms of the reciprocal basis of its corresponding reference structure. Their number must match _cell_modulation_dimension. In the case of composites described in a single data block, the wave vectors are expressed in the three-dimensional basis chosen as reference in _cell_reciprocal_basis_description, which would correspond to the subsystem (if any) whose \(W\) matrix is the (_cell_modulation_dimension +3) \(\times\) (_cell_modulation_dimension +3) unit matrix. In this case, the wave vectors used to describe the modulation of each subsystem are referred to their own reciprocal basis via the \(W\) matrices (for details see _cell_subsystem_matrix_w_ and _atom_site_Fourier_wave_vector_).
Appears in list containing _cell_wave_vector_seq_id. Where no value is given, the assumed value is ' 0.0 '. [cell_wave_vector]

\section*{CELL_WAVE_VECTORS}

Data items in the CELL_WAVE_VECTORS category record details about the set of independent modulation wave vectors \(\mathbf{q}_{i}\) and their measurement. The diffraction vectors are indexed in the form \(h \mathbf{a}^{*}+k \mathbf{b}^{*}+l \mathbf{c}^{*}+\sum_{i}\left(m_{i} \mathbf{q}_{i}\right) . \sum_{i}\) is taken over all wave vectors. In this version of the dictionary, the index \(i\) has been restricted to be less than 9 .
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
_cell_wave_vectors_meas_details
'Determined from profiles along q'
cell wave vectors meas details
(char)
Details about the method used to determine the independent modulation wave vector(s).
_cell_wave_vectors_pressure_max
_cell_wave_vectors_pressure_min (numb, su)
The maximum and minimum values of the pressure in kilopascals defining the interval within which the modulation wave vector(s) were measured.
The permitted range is \(0.0 \rightarrow \infty\). [cell_wave_vectors]
_cell_wave_vectors_temp_max
(numb, su)
The maximum and minimum values of the temperature in kelvins defining the interval within which the modulation wave vector(s) were measured.
The permitted range is \(0.0 \rightarrow \infty\). [cell_wave_vectors]
_cell_wave_vectors_variation
(char)
\(\overline{\text { Details concerning the behaviour (and its experimental detection) }}\) of the wave vector(s) with temperature and/or pressure within the ranges specified by _cell_wave_vectors_pressure_max, _cell_wave_vectors_pressure_min, _cell_wave_vectors_ temp_max and _cell_wave_vectors_temp_min.
[cell_wave_vectors]

\section*{DIFFRN_REFLN}

Data items in the DIFFRN_REFLN category record details about the intensities measured in the diffraction experiment. The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists. (The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped.) Data items in this category are extensions of the core CIF dictionary definitions to the indexing of diffraction intensities by higherdimensional components.
\[
\begin{aligned}
& \text { _diffrn_refln_index_m_1 } \\
& \text { _diffrn_refln_index_m_2 } \\
& \text {-diffrn_refln_index_m_3 } \\
& \text { _diffrn_refln_index_m_4 } \\
& \text {-diffrn_refln_index_m_5 } \\
& \text { _diffrn_refln_index_m_6 } \\
& \text {-diffrn_refln_index_m_7 } \\
& \text { _diffrn_refln_index_m_8 }
\end{aligned}
\]
(numb)
Additional Miller indices needed to write the reciprocal vector of a certain reflection in the basis described in _cell_reciprocal_basis_description. Following the usual convention, such a vector would be expressed as
\[
\mathbf{H}=h^{*} \mathbf{a}^{*}+k^{*} \mathbf{b}^{*}+l^{*} \mathbf{c}^{*}+m_{1}^{*} \mathbf{q}_{1}+\ldots+m_{8}^{*} \mathbf{q}_{8}
\]
where \(h, k, l\) are the usual _diffrn_refln_index_, and \(\mathbf{q}_{1}, \ldots, \mathbf{q}_{8}\) represent the independent wave vectors given by _cell_wave_vector_ and identified by _cell_wave_vector_ seq_id. Therefore, the total number of indices of a given reflection must match (_cell_modulation_dimension +3) and the order of the additional indices must be consistent with the codes given in _cell_wave_vector_seq_id. These indices need not match _refln_index_m_ values if a transformation of the original measured cell has occurred.
Appears in list containing _diffrn_refln_index_h, _diffrn_refln_index_k, _diffrn_refln_index_l.

\section*{DIFFRN_REFLNS}

Data items in the DIFFRN_REFLNS category record details about the set of intensities measured in the diffraction experiment. The DIFFRN_REFLNS data items specify the parameters that apply to all intensity measurements. The DIFFRN_REFLNS data items are not looped. (The DIFFRN_REFLN data items refer to individual intensity measurements and must be included in looped lists.) Data items in this category extend the core CIF dictionary definitions providing independent checks on the range of values recorded for each of the additional Miller indices given in the DIFFRN_REFLN category.
-diffrn_reflns_limit_index_m_1_max
-diffrn_reflns_limit_index_m_1_min
-diffrn_reflns_limit_index_m_2_max
-diffrn_reflns_limit_index_m_2_min
-diffrn_reflns_limit_index_m_3_max
-diffrn_reflns_limit_index_m_3_min
-diffrn_reflns_limit_index_m_4_max
-diffrn_reflns_limit_index_m_4_min
-diffrn_reflns_limit_index_m_5_max
-diffrn_reflns_limit_index_m_5_min
-diffrn_reflns_limit_index_m_6_max
-diffrn_reflns_limit_index_m_6_min
-diffrn_reflns_limit_index_m_7_max
-diffrn_reflns_limit_index_m_7_min
-diffrn_reflns_limit_index_m_8_max
_diffrn_reflns_limit_index_m_8_min
(numb)
\(\bar{M}\) Maximum and minimum values of the additional Miller indices appearing in _diffrn_refln_index_m_. The number of ranges must match _cell_modulation_dimension. The order of the additional indices must be consistent with the codes given in _cell_wave_vector_seq_id.
[diffrn_reflns]
_diffrn_reflns_satellite_order_max
(numb)
\(\overline{\text { Maximum }}\) order of observed satellites.
[diffrn_reflns]

\section*{DIFFRN_STANDARD_REFLN}

Data items in the DIFFRN_STANDARD_REFLN category record details about the reflections treated as standards during the measurement of diffraction intensities. Note that these are the individual standard reflections, not the results of the analysis of the standard reflections. Data items in this category are extensions of the core CIF dictionary definitions to the indexing of standard reflections by higher-dimensional components.
```

_diffrn_standard_refln_index_m_1
_diffrn_standard_refln_index_m_2
_diffrn_standard_refln_index_m_3
_diffrn_standard_refln_index_m_4
_diffrn_standard_refln_index_m_5
_diffrn_standard_refln_index_m_6
diffrn_standard_refln_index_m_7
_diffrn_standard_refln_index_m_8

```
(numb)
Additional Miller indices needed to write the reciprocal vectors of the standard intensities used in the diffraction measurement process, in the basis described in _cell_reciprocal_basis_ description. The total number of indices of a given standard reflection must match (_cell_modulation_dimension +3) and the
order of the additional indices must be consistent with the codes given in _cell_wave_vector_seq_id.
Appears in list containing _diffrn_standard_refln_index_h,
_diffrn_standard_refln_index_k,_diffrn_standard_refln_index_l.
[diffrn_standard_refln]

\section*{EXPTL_CRYSTAL}

Data items in the EXPTL_CRYSTAL category record details about experimental measurements on the crystal or crystals used, such as shape, size and density. The new data item added to this category specifies whether the structure is crystalline, modulated or composite.

\section*{_exptl_crystal_type_of_structure}
(char)
The type of structure. This is used to check the consistency of a CIF: the data blocks that are expected and/or certain characteristic parameters depend on whether the material is classified as crystalline (periodic in three dimensions), modulated or composite.
The data value must be one of the following:
cryst crystalline structure
mod modulated structure
comp composite (misfit) structure
Where no value is given, the assumed value is 'cryst'.
[exptl_crystal]

\section*{EXPTL_CRYSTAL_FACE}

Data items in the EXPTL_CRYSTAL_FACE category record details of the crystal faces. Data items in this category are extensions of the core CIF dictionary definitions to the indexing of crystal faces by higher-dimensional components.
```

_exptl_crystal_face_index_m_1
_exptl_crystal_face_index_m_2
_exptl_crystal_face_index_m_3
_exptl_crystal_face_index_m_4
_exptl_crystal_face_index_m_5
_exptl_crystal_face_index_m_6
_exptl_crystal_face_index_m_7
_exptl_crystal_face_index_m_8

```
(numb)
Additional Miller indices of the crystal face associated with the value _exptl_crystal_face_perp_dist when the face is indexed using a multidimensional scheme. The total number of indices must match (_cell_modulation_dimension + 3). The order of the indices must be consistent with the codes given in _cell_wave_vector_seq_id.
Appears in list containing _exptl_crystal_face_index_h,
_exptl_crystal_face_index_k,_exptl_crystal_face_index_l.
[exptl_crystal_face]

\section*{GEOM_ANGLE}

Data items in the GEOM_ANGLE category record details about the bond angles, as calculated from the ATOM, CELL and SYMMETRY data. These extensions to the core CIF dictionary definitions record the maximum, minimum and average values of angles and extend the symmetry-operation code used in angle listings to the higher-dimensional superspace form.
_geom_angle_max
_geom_angle_min
_geom_angle_av
(numb, su)

Maximum, minimum and average angles in degrees bounded by _geom_angle_atom_site_label_1, *_2, and *_3. The site at *_2 is at the apex of the angle.
Appears in list containing _geom_angle_atom_site_label_. [geom_angle]
```

_geom_angle_site_ssg_symmetry_1
_geom_angle_site_ssg_symmetry_2
_geom_angle_site_ssg_symmetry_3 (char)

```

The symmetry code of each atom site as the symmetry operation number ' \(n\) ' and the higher-dimensional translation ' \(m_{1} \ldots m_{p}\) '. These numbers are combined to form the code ' \(n m_{1} \ldots m_{p}\) ' or \(n_{-} m_{1} \ldots m_{p}\). The character string \(n_{-} m_{1} \ldots m_{p}\) is composed as follows: ' \(n\) ' refers to the symmetry operation that is applied to the superspace coordinates. It must match a number given in _space_group_symop_ssg_id. ' \(m_{1} \ldots m_{p}\) ' refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations \(\left(t_{1}, \ldots, t_{p}\right)\) are related to \(\left(m_{1} \ldots m_{p}\right)\) by the relations \(m_{1}=5+t_{1}, \ldots, m_{p}=5+t_{p}\). By adding 5 to the translations, the use of negative numbers is avoided. The number ' \(p\) ' must agree with (_cell_modulation_dimension +3). If there are no cell translations, the translation number may be omitted. If no symmetry operations or translations are applicable, then a single full stop '. ' is used.
Appears in list containing _geom_angle_atom_site_label_
Examples: ‘.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_6455' (7th symmetry position; +a on \(x\), -b on \(y\)).
[geom_angle]

\section*{GEOM_BOND}

Data items in the GEOM_BOND category record details about bonds, as calculated from the ATOM, CELL and SYMMETRY data. These extensions to the core CIF dictionary definitions record the maximum, minimum and average lengths of bonds and extend the symmetry-operation code used in bond listings to the higherdimensional superspace form.

\section*{_geom_bond_distance_max \\ _geom_bond_distance_min \\ _geom_bond_distance_av}
(numb, su)
Maximum, minimum and average values of the intramolecular bond distance in ångströms.
Appears in list containing _geom_bond_atom_site_label_.
The permitted range is \(0.0 \rightarrow \infty\).

\section*{[geom_bond]}
_geom_bond_site_ssg_symmetry_1
_geom_bond_site_ssg_symmetry_2
(char)
The symmetry code of each atom site as the symmetry operation number ' \(n\) ' and the higher-dimensional translation ' \(m_{1} \ldots m_{p}\) '. These numbers are combined to form the code ' \(n m_{1} \ldots m_{p}\) ' or \(n_{-} m_{1} \ldots m_{p}\). The character string \(n_{-} m_{1} \ldots m_{p}\) is composed as follows: ' \(n\) ' refers to the symmetry operation that is applied to the superspace coordinates. It must match a number given in _space_group_symop_ssg_id. ' \(m_{1} \ldots m_{p}\) ' refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the bond. These translations \(\left(t_{1}, \ldots, t_{p}\right)\) are related to \(\left(m_{1} \ldots m_{p}\right)\) by the relations \(m_{1}=5+t_{1}, \ldots, m_{p}=5+t_{p}\). By adding 5 to the translations, the use of negative numbers is avoided. The number ' \(p\) ' must agree with (_cell_modulation_dimension +3). If there are no
cell translations, the translation number may be omitted. If no symmetry operations or translations are applicable, then a single full stop '. ' is used.
Appears in list containing _geom_bond_atom_site_label_.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_6455' (7th symmetry position; +a on \(x\), -b on \(y\)).
[geom_bond]

\section*{GEOM_CONTACT}

Data items in the GEOM_CONTACT category record details about interatomic contacts, as calculated from the ATOM, CELL and SYMMETRY data. These extensions to the core CIF dictionary definitions record the maximum, minimum and average values of contact distances and extend the symmetry-operation code used in contact-distance listings to the higher-dimensional superspace form.
```

_geom_contact_distance_max _geom_contact_distance_min

```
_geom_contact_distance_av
(numb, su)
Maximum, minimum and average values of the interatomic contact distance in ångströms.
Appears in list containing _geom_contact_atom_site_label_.
The permitted range is \(0.0 \rightarrow \infty\).
[geom_contact]

\section*{_geom_contact_site_ssg_symmetry_1 _geom_contact_site_ssg_symmetry_2}
(char)
The symmetry code of each atom site as the symmetry operation number ' \(n\) ' and the higher-dimensional translation ' \(m_{1} \ldots m_{p}\) '. These numbers are combined to form the code ' \(n m_{1} \ldots m_{p}\) ' or \(n_{-} m_{1} \ldots m_{p}\). The character string \(n_{-} m_{1} \ldots m_{p}\) is composed as follows: ' \(n\) ' refers to the symmetry operation that is applied to the superspace coordinates. It must match a number given in _space_group_symop_ssg_id. ' \(m_{1} \ldots m_{p}\) ' refer to the translations that are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the contact. These translations \(\left(t_{1}, \ldots, t_{p}\right)\) are related to \(\left(m_{1} \ldots m_{p}\right)\) by the relations \(m_{1}=5+t_{1}, \ldots, m_{p}=5+t_{p}\). By adding 5 to the translations, the use of negative numbers is avoided. The number ' \(p\) ' must agree with (_cell_modulation_dimension +3). If there are no cell translations, the translation number may be omitted. If no symmetry operations or translations are applicable, then a single full stop '. ' is used.
Appears in list containing _geom_contact_atom_site_label_.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied),
'7_6455' (7th symmetry position; +a on \(x\), -b on \(y\)). [geom_contact]
_geom_torsion_max
_geom_torsion_min
_geom_torsion_av
(numb, su)
Maximum, minimum and average torsion angles in degrees bounded by the four atom sites identified by the _geom_torsion_atom_site_label_ codes. These must match labels specified as _atom_site_label in the atom list. The torsionangle definition should be that of Klyne and Prelog.
Reference: Klyne, W. \& Prelog, V. (1960). Experientia, 16, 521-523.
Appears in list containing _geom_torsion_atom_site_label_. [geom_torsion]
```

_geom_torsion_site_ssg_symmetry_1
geom_torsion_site_ssg_symmetry_2
_geom_torsion_site_ssg_symmetry_3
_geom_torsion_site_ssg_symmetry_4 (char)

```

The symmetry code of each atom site as the symmetry operation number ' \(n\) ' and the higher-dimensional translation ' \(m_{1} \ldots m_{p}\) '. These numbers are combined to form the code ' \(n m_{1} \ldots m_{p}\) ' or \(n_{-} m_{1} \ldots m_{p}\). The character string \(n_{-} m_{1} \ldots m_{p}\) is composed as follows: ' \(n\) ' refers to the symmetry operation that is applied to the superspace coordinates. It must match a number given in _space_group_symop_ssg_id. ' \(m_{1} \ldots m_{p}\) ' refer to the translations \(\overline{\text { that }}\) are subsequently applied to the symmetry-transformed coordinates to generate the atom used in calculating the angle. These translations \(\left(t_{1}, \ldots, t_{p}\right)\) are related to \(\left(m_{1} \ldots m_{p}\right)\) by the relations \(m_{1}=5+t_{1}, \ldots, m_{p}=5+t_{p}\). By adding 5 to the translations, the use of negative numbers is avoided. The number ' \(p\) ' must agree with (_cell_modulation_dimension + 3). If there are no cell translations, the translation number may be omitted. If no symmetry operations or translations are applicable, then a single full stop '. ' is used.
Appears in list containing _geom_torsion_atom_site_label_.
Examples: '.' (no symmetry or translation to site), '4' (4th symmetry operation applied), '7_6455' (7th symmetry position; +a on \(x\), -b on \(y\)). [geom_torsion]

\section*{REFINE}

Data items in the REFINE category record details about the structure refinement parameters. The new items in this category extend those of the core CIF dictionary and are specific to the refinement of modulated structures.

\section*{_refine_ls_mod_func_description (char)}
\(\overline{\text { Types }}\) of modulation present in the structural model and their parameterization.
Examples: ‘Only displacive modulation. Fourier series.',
; Modulation of atom \(S(1)\) described by a non-standard
linear sawtooth function
; [refine]
refine ls mod hydrogen treatment
(char)
\(\bar{T} r e a t m e n t ~ o f ~ h y d r o g e n-a t o m ~ m o d u l a t i o n ~ p a r a m e t e r s ~ i n ~ t h e ~ r e f i n e-~\) ment.
The data value must be one of the following:
refA
refined H -atom displacive modulation parameters only
refp
refined H-atom coordinates and displacive modulation
parameters only

Where no value is given, the assumed value is 'nomod'.
_refine_ls_mod_overall_phason_coeff (numb, su) \(\bar{T}\) The phason coefficient used to calculate the overall phason correction.
The permitted range is \(0.0 \rightarrow \infty\). Where no value is given, the assumed value is ' 0.0 '.
_refine_ls_mod_overall_phason_formula
\(\bar{T}\) The expression for the overall phason correction, if used.
The data value must be one of the following:
Axe Axe, J. D. (1980). Phys. Rev. B, 21, 4181-4190.
Ovr Overhauser, A. W. (1971). Phys. Rev. B, 3, 3173-3182.
[refine]

\section*{REFLN}

Data items in the REFLN category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The REFLNS data items specify the parameters that apply to all reflections. The REFLNS data items are not looped. Data items in this category are extensions of the core CIF dictionary definitions to the indexing of reflections used in the refinement by higher-dimensional components.
```

_refln_index_m_1
_refln_index_m_2
_refln_index_m_3
_refln_index_m_4
-refln_index_m_5
_refln_index_m_6
_refln_index_m_7
_refln_index_m_8

```
(numb)
Additional Miller indices of a particular reflection in the basis described in _cell_reciprocal_basis_description. The total number of indices must match (_cell_modulation_dimension + 3). The order of the additional indices \(\bar{m} u s t\) be consistent with the codes given in _cell_wave_vector_seq_id.
Appears in list containing _refln_index_h,_refln_index_k,_refln_index_l.
[refln]

\section*{REFLNS}

Data items in the REFLNS category record details about the reflections used to determine the ATOM_SITE data items. The REFLN data items refer to individual reflections and must be included in looped lists. The reflns data items specify the parameters that apply to all reflections. The REFLNS data items are not looped. Data items in this category extend the core CIF dictionary definitions providing independent checks on the range of values recorded for each of the additional Miller indices given in the REFLN category.
```

_reflns_limit_index_m_1_max
_reflns_limit_index_m_1_min
_reflns_limit_index_m_2_max
_reflns_limit_index_m_2_min
_reflns_limit_index_m_3_max
_reflns_limit_index_m_3_min
_reflns_limit_index_m_4_max
_reflns_limit_index_m_4_min
_reflns_limit_index_m_5_max
_reflns_limit_index_m_5_min

```
_reflns_limit_index_m_6_max
_reflns_limit_index_m_6_min
-reflns_limit_index_m_7_max
_reflns_limit_index_m_7_min
-reflns_limit_index_m_8_max
_reflns_limit_index_m_8_min

\section*{(numb)}

Maximum and minimum values of the additional Miller indices appearing in _refln_index_m_. The number of ranges must match _cell_modulation_dimension. The order of the additional indices must be consistent with the codes given in _cell_wave_vector_seq_id. These need not be the same as the _diffrn_reflns_limit_index_m_.

\section*{SPACE_GROUP}

The SPACE_GROUP category introduced in the symmetry CIF dictionary (cif_sym.dic) is intended to replace the original core SYMMETRY category. For modulated structures, superspace-group descriptions may be included in the same category, but include the _ssg_flag to indicate their dimensionality of \(>3\).

> space_group_ssg_IT_number Superspace-group number from International Tables for Crystallography, Vol. C (2004). Valid only for one-dimensional modulated structures. Reference: International Tables for Crystallography (2004). Vol. C, Chapter 9.8. Dordrecht: Kluwer Academic Publishers. The permitted range is \(1.1 \rightarrow \infty\).
[space_group]
_space_group_ssg_name

\section*{(char)} \(\overline{\text { Superspace-group }}\) symbol conforming to an alternative definition from that given in _space_group_ssg_name_it and _space_group_ssg_name_wJJ for one-dimensional modulated structures or to the superspace-group name for higher dimensions. When necessary, indicate the origin and the setting. Use a colon \(\because '\) as a separator between the different parts of the superspacegroup symbol. Within each part, leave a space between each component. Rules for the notation for Hermann-Mauguin and Hall symbols (if present) are given in the symmetry CIF dictionary (cif_sym.dic) and, partially, in _space_group_ssg_name_IT and _space_group_ssg_name_wJJ. For composites described in a sin\(\overline{\text { gle data block, }}\), the superspace group describes the symmetry of the whole structure. The symmetry of each subsystem can be derived using the appropriate \(W\) matrices.
Example: 'Hall's notation W:-P -2xb -2ya:q q'. [space_group]
\[
\begin{aligned}
& \text { space_group_ssg_name_IT } \\
& \text { Superspace-group symbol as given in International Tables for } \\
& \text { Crystallography, Vol. C (2004). Valid only for one-dimensional } \\
& \text { modulated structures. The symbol is divided into three parts: the } \\
& \text { Hermann-Mauguin space-group symbol of the reference structure, } \\
& \text { the modulation wave vector and the phase shift (or internal trans- } \\
& \text { lation) associated with each component of the space group. Each } \\
& \text { component of the space-group name is separated by a space. Sub- } \\
& \text { scripts should appear without special symbols and bars should be } \\
& \text { given as negative signs. The components of the modulation wave } \\
& \text { vector (in parentheses) and the phase shifts are also separated by a }
\end{aligned}
\]
space. For composites described in a single data block, the superspace group describes the symmetry of the whole structure. The symmetry of each subsystem can be derived using the appropriate \(W\) matrices.

Reference: International Tables for Crystallography (2004). Vol. C, Chapter 9.8. Dordrecht: Kluwer Academic Publishers.

[space_group]
_space_group_ssg_name_wJJ
(char)
Superspace-group symbol as given by de Wolff, Janssen \& Janner (1981). Valid only for one-dimensional modulated structures. The symbol is divided into three parts separated by colons ' \(:\) ': the superspace lattice symbol, the Hermann-Mauguin space-group symbol of the reference structure and the phase shift (or internal translation) associated with each component of the space group. Each component of the space-group name is separated by a space. Subscripts should appear without special symbols and bars should be given as negative signs. The phase shifts are also separated by a space. For composites described in a single data block, the superspace group describes the symmetry of the whole structure. The symmetry of each subsystem can be derived using the appropriate \(W\) matrices.

Reference: Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.
Example: 'P:P c m n:s s -1'. [space_group]
_space_group_ssg_WJJ_code
(char)
Superspace-group code as given by de Wolff, Janssen \& Janner (1981). Valid only for one-dimensional modulated structures.

Reference: Wolff, P. M. de, Janssen, T. \& Janner, A. (1981). Acta Cryst. A37, 625-636.
Example: '28a.10.1/2’. [space_group]

\section*{SPACE_GROUP_SYMOP}

The SPACE_GROUP_SYMOP category introduced in the symmetry CIF dictionary (cif_sym.dic) is intended to replace the original core SYMMETRY_EQUIV category. It contains information about the symmetry operations of the space group. For modulated structures, superspace-group descriptions may be included in the same category, but include the _sss_flag to indicate their dimensionality of \(>3\).
Example 1 - example corresponding to the one-dimensional incommensurately modulated structure of \(\mathrm{K}_{2} \mathrm{SeO}_{4}\).
loop_
_space_group_symop_ssg_id
_space_group_symop_ssg_operation_algebraic
\(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \times 4\)
\(1 / 2+x 1,1 / 2-x 2,1 / 2-x 3, x 4\)
\(1 / 2-\mathrm{x} 1,1 / 2+\mathrm{x} 2,-\mathrm{x} 3,1 / 2-\mathrm{x} 4\)
\(-\mathrm{x} 1,-\mathrm{x} 2,1 / 2+\mathrm{x} 3,1 / 2-\mathrm{x} 4\)
\(-\mathrm{x} 1,-\mathrm{x} 2,-\mathrm{x} 3,-\mathrm{x} 4\)
\(1 / 2-\mathrm{x} 1,1 / 2+\mathrm{x} 2,1 / 2+\mathrm{x} 3,-\mathrm{x} 4\)
\(1 / 2+x 1,1 / 2-x 2, x 3,1 / 2+x 4\)
\(\mathrm{x} 1, \mathrm{x} 2,1 / 2-\mathrm{x} 3,1 / 2+\mathrm{x} 4\)
_space_group_symop_ssg_id
(numb)
\(\overline{\text { A }}\) numeric code identifying each entry in the _space_group_ symop_ssg_operation_algebraic list.
Appears in list.
[space_group_symop]
_space_group_symop_ssg_operation_algebraic (char) \(\overline{\mathrm{A}}\) parsable string giving one of the symmetry operations of the superspace group in algebraic form. These data will generally be repeated in a loop. Use symbols as necessary according to _cell_modulation_dimension. All symmetry operations should be entered, including the identity operation, those for lattice centring and a centre of symmetry, if present. The symbolic notation for coordinates is such that the identity operation is expressed as \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\). _space_group_symop_ssg_operation_algebraic must always be present in a CIF corresponding to a modulated structure.
Appears in list containing_space_group_symop_ssg_id.
Example: ' \(\mathrm{x} 1,-\mathrm{x} 2, \mathrm{x} 3,1 / 2+\mathrm{x} 4\) '.
[space_group_symop]```

[^0]: Affiliation: Gotzon Madariaga, Departamento de Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, Bilbao 48080, Spain.

