Electron density dictionary (rhoCIF) version 1.0.1
Category ATOM_RHO_MULTIPOLE
Name:'_atom_rho_multipole_[rho]'
Definition:
This category contains information about the multipole coefficients used to describe the electron density. High-resolution X-ray diffraction methods enable the determination of the electron density distribution in crystal lattices and molecules, which in turn allows for a characterization of chemical interactions (Coppens, 1997; Koritsanszky & Coppens, 2001). This is accomplished by the construction of a mathematical model of the charge density in a crystal and then by fitting the parameters of such a model to the experimental pattern of diffracted X-rays. The model on which this dictionary is based is the so-called multipole formalism proposed by Hansen & Coppens (1978). In this model, the electron density in a crystal is described by a sum of aspherical "pseudoatoms" where the pseudoatom density has the form defined in the _atom_rho_multipole_* items. Each pseudoatom density consists of terms representing the core density, the spherical part of the valence density and the deviation of the valence density from sphericity. The continuous electron density in the crystal is then modelled as a sum of atom-centred charge distributions. Once the experimental electron density has been established, the "atoms in molecules" theory of Bader (1990) provides tools for the interpretation of the density distribution in terms of its topological properties. Ref: Bader, R. F. W. (1990). Atoms in molecules: a quantum theory. Oxford University Press. Coppens, P. (1997). X-ray charge densities and chemical bonding. Oxford University Press. Hansen, N. K. & Coppens, P. (1978). Acta Cryst. A34, 909-921. Koritsanszky, T. S. & Coppens, P. (2001). Chem. Rev. 101, 1583-1621.Example:
Example 1 - Multipole coefficients for the nickel ion in
[Ni(H3L)][NO3][PF6], [H3L =
N,N',N''-tris(2-hydroxy-3-methylbutyl)-1,4,7-triazacyclononane]
[G.T. Smith et al. (1997). J. Am. Chem. Soc. 119, 5028-5034].
loop_ _atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P00 _atom_rho_multipole_coeff_P11 _atom_rho_multipole_coeff_P1-1 _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P20 _atom_rho_multipole_coeff_P21 _atom_rho_multipole_coeff_P2-1 _atom_rho_multipole_coeff_P22 _atom_rho_multipole_coeff_P2-2 _atom_rho_multipole_coeff_P30 _atom_rho_multipole_coeff_P31 _atom_rho_multipole_coeff_P3-1 _atom_rho_multipole_coeff_P32 _atom_rho_multipole_coeff_P3-2 _atom_rho_multipole_coeff_P33 _atom_rho_multipole_coeff_P3-3 _atom_rho_multipole_coeff_P40 _atom_rho_multipole_coeff_P41 _atom_rho_multipole_coeff_P4-1 _atom_rho_multipole_coeff_P42 _atom_rho_multipole_coeff_P4-2 _atom_rho_multipole_coeff_P43 _atom_rho_multipole_coeff_P4-3 _atom_rho_multipole_coeff_P44 _atom_rho_multipole_coeff_P4-4 _atom_rho_multipole_kappa _atom_rho_multipole_kappa_prime0 _atom_rho_multipole_kappa_prime1 _atom_rho_multipole_kappa_prime2 _atom_rho_multipole_kappa_prime3 _atom_rho_multipole_kappa_prime4 Ni2+(1) 2.38(4) 0.32(4) 0.00 0.00 -0.02(1) 0.00(2) 0.00 0.00 0.00 0.00 -0.08(1) 0.00 0.00 0.00 0.00 0.06(1) -0.04(1) 0.05(1) 0.00 0.00 0.00 0.00 -0.20(1) 0.08(1) 0.00 0.00 1.04(1) 0.44(1) 0.44 1.15(4) 0.44 1.15 |
Type: null
Category: category_overview