International Tables for Crystallography (2006). Vol. G, Section 5.1.3.3, pp. 484—486.

5. APPLICATIONS

CIF input data

cif2pdb

Babel |

‘ General application ‘

Babel |

pdb2cif

CIF output data

Fig. 5.1.3.2. Example of using filters to make a general application CIF-aware.

provides CIFTr by Zukang Feng and John Westbrook (http://sw-
tools.pdb.org/apps/CIFTt/) to translate from the extended mmCIF
format described in Appendix 3.6.2 to PDB format and MAXIT
(http://sw-tools.pdb.org/apps/MAXIT/), a more general package
that includes conversion capabilities. See also Chapter 5.5 for an
extended discussion of the handling of mmCIF in the PDB soft-
ware environment.

5.1.3.2. Using existing CIF libraries and APIs

Another approach to making an existing application CIF-aware
or to design a new CIF-aware application is to make use of one
(or more) of the existing CIF libraries and application program-
ming interfaces (APIs). Because the data involved need not be
reprocessed, code that uses a library directly is often faster than
equivalent code working with filter programs. The code within an
application can be tuned to the internal data structures and coding
conventions of the application.

The approach to internal design depends on the language, data
structures and operating environment of the application. A few
years ago, the precise details of language version and operat-
ing system would have been major stumbling blocks to conver-
sion. Today, however, almost every platform supports a variation

Request list

listing tags in order Unordered CIF input data

\ QUASAR or cif2cif \

Ordered CIF input data

Order-sensitive
application or filter

Fig. 5.1.3.3. Using QUASAR or cif2cif to reorder CIF data for an order-dependent
application or filter.

Copyright © 2006 International Union of Crystallography

484

CIF input data CIF output data

Internal data

CIF-aware API structure

Application

Fig. 5.1.3.4. Typical dataflow of a C-based CIF API.

of the Unix application programming interface and many lan-
guages have viable interfaces to C and/or C++. Therefore it is
often feasible to consider use of C, C++ or Objective-C libraries,
even for Fortran applications. Star_Base (Spadaccini & Hall,
1994; Chapter 5.2) is a program for extracting data from STAR
Files. It is written in ANSI C and includes the code needed to
parse a STAR File. OOSTAR (Chang & Bourne, 1998; Chapter
5.2) is an Objective-C package that includes another parser for
STAR Files (http://www.sdsc.edu/pb/cif/OOSTAR.html). CIFLIB
(Westbrook et al., 1997) provides a CIF-specific API. CIFPARSE
(Tosic & Westbrook, 1998) is another C-based library for CIF.
CBFlib (Chapter 5.6) is an ANSI C API for both CIF and
CBF/imgCIF files. The CifSieve package (Hester & Okamura,
1998) provides specialized code generation for retrieval of partic-
ular data items in either C or Fortran (see Chapter 5.3 for more
details). The package cciflib (Keller, 1996) (http://www.ccp4.
ac.uk/dist/html/mmcifformat.html) is used by the CCP4 program
suite to support mmCIF in both C and Fortran applications. If an
application in Fortran is to be converted with a purely Fortran-
based library, the package CIFtbx (Hall, 1993; Hall & Bernstein,
1996) is a solution. See Chapter 5.4 for more details.

The common interface provided in C-based applications is for
the library to buffer the entire CIF file into an internal data structure
(usually a tree), essentially creating a memory-resident database
(see Fig. 5.1.3.4). This preload greatly reduces any demands on
the application to deal with the order-independence of CIF, at the
expense of what can be a very high demand for memory. The prob-
lem of excessive memory demand is dealt with in CBFlib by keep-
ing large text fields on disk, with only pointers to them in memory.
In some libraries, validation of tags against dictionaries is handled
by the APL In others it is the responsibility of the application pro-
grammer. While the former approach helps to catch errors early,
the second, ‘lightweight’ approach is more popular when fast per-
formance is required.

The most commonly used versions of Fortran do not include
dynamic memory management. In order to preload an arbitrary
CIF, one needs to use one of the C-based libraries. Alternatively,
a pure Fortran application can transfer CIFs being read to a disk-
based random access file. CIFtbx does this each time it opens a
CIF. The user never works directly with the original CIF data set.
This provides a clean and simple interface for reading, but slows
all read access to CIFs. In Fortran, compromises are often neces-
sary, with critical tables handled in memory rather than on disk,
but this may force changes in dimensions and then recompilation
when dictionaries or data sets become larger than anticipated.

5.1.3.3. Creating a CIF-aware application from scratch

The primary disadvantage of using an existing CIF library or
API in building an application is that there can be a loss of per-
formance or a demand for more resources than may be needed.
The common practice followed by most libraries of building and

http://it.iucr.org/Ga/ch5o1v0001/sec5o1o3o3/

5.1. GENERAL CONSIDERATIONS IN PROGRAMMING CIF APPLICATIONS

cbf: datablock { cbf failnez (cbf find parent (&($$), $1, CBF _ROOT)) }

cbfstart: { $$ = ((void **) context) I[1]; }

datablockstart: cbfstart { cbf failnez (cbf make child (&($$), $1, CBF DATABLOCK, NULL)) }
| cbf datablockname { cbf failnez (cbf make child (&($$), $1, CBF DATABLOCK, $2)) }

datablock: datablockstart { $5 = %1; }

| assignment { cbf failnez (cbf find parent (&($$), $1, CBF DATABLOCK)) }

| loopassignment { cbf failnez (cbf find parent (&($3), $1, CBF DATABLOCK)) }

category: datablock categoryname { cbf failnez (cbf make child (&($$), $1, CBF_CATEGORY, $2)) }
column: category columnname { cbf_ failnez (cbf make _child (&($$), $1, CBF_COLUMN, $2)) }

\ datablock itemname { cbf failnez (cbf make new child (&($$), $1, CBF_CATEGORY, NULL))

cbf failnez (cbf make child (&($$), $$, CBF_COLUMN, $2)) }
assignment: column value { ¢35 = %1;
cbf failnez (cbf set columnrow ($$, 0, $2, 1)) }
loopstart: datablock loop { cbf failnez (cbf_make node (&($$), CBF_LINK, NULL, NULL))
cbf failnez (cbf set link ($$, $1)) }
loopcategory: loopstart categoryname { cbf failnez (cbf_make child (&($$), $1, CBF_CATEGORY, $2))
cbf failnez (cbf_ set_link ($1, $3)
$8 = s1;)

\ loopcolumn categoryname { cbf failnez (cbf find parent (&($$), $1, CBF_DATABLOCK))
cbf failnez (cbf make child (&($$), $$, CBF_CATEGORY, $2))
cbf failnez (cbf set link ($1, $$)
$ = 815)

loopcolumn: loopstart itemname { cbf failnez (cbf make new child (&($$), $1, CBF_CATEGORY, NULL))
cbf failnez (cbf make child (&($$), $$, CBF_COLUMN, $2))
cbf failnez (cbf set link ($1, $$)
cbf failnez (cbf add link ($1, $$)
$$ = $1; }

\ loopcolumn itemname { cbf failnez (cbf find parent (&($$), $1, CBF_DATABLOCK))
cbf_ failnez (cbf make child (&($$), $$, CBF_CATEGORY, NULL))
cbf failnez (cbf make child (&($$), $$, CBF_COLUMN, $2))
cbf failnez (cbf set link ($1, $$)
cbf _failnez (cbf_add link ($1, $$))
$$ = $1; }

| loopcategory columnname { cbf failnez (cbf make child (&($3), $1, CBF COLUMN, $2))
cbf failnez (cbf set link ($1, $3)
cbf failnez (cbf add link ($1, $$)
$$ = $1; }

loopassignment: loopcolumn value { $S = $1;
cbf failnez (cbf shift link ($%)
cbf failnez (cbf add columnrow (3%, $2)) }

| loopassignment value { $3 = $1;
cbf_ failnez (cbf_shift link ($$)
cbf failnez (cbf add columnrow ($$, $2)) }

loop: LOOP

datablockname: DATA { $5 = %1; }

categoryname: CATEGORY { 3 = ¢1; }

columnname: COLUMN { $3 = %$1; }

itemname: ITEM { 88 = %1; }

value: STRING { 88 = %1; }
| WORD { 8 =s1;)}
| BINARY { s = s1; }

Fig. 5.1.3.5. Example of bison data defining a CIF parser (taken from CBFlib).

preloading an internal data structure that holds the entire CIF may
not be the optimal choice for a given application. When reading
a CIF it is difficult to avoid the need for extra data structures to
resolve the issue of CIF order independence. However, when writ-
ing data to a CIF, it may be sufficient simply to write the necessary

tags and values from the internal data structures of an application,
rather than buffering them through a special CIF data structure.

It is tempting to apply the same reasoning to the reading of CIF
and create a fixed ordering in which data are to be processed, so
that no intermediate data structure will be needed to buffer a CIF.

485

5. APPLICATIONS

Unless the application designer can be certain that externally pro-
duced CIFs will never be presented to the application, or will be fil-
tered through a reordering filter such as QUASAR or cif2cif, work-
ing with CIFs in an order-dependent mode is a mistake.

Because of the importance of being able to accept CIFs writ-
ten by any other application, which may have written its data in a
totally different order than is expected, it is a good idea to make
use of one of the existing libraries or APIs if possible, unless there
is some pressing need to do things differently.

If a fresh design is needed, e.g. to achieve maximal performance
in a time-critical application, it will be necessary to create a CIF
parser to translate CIF documents into information in the internal
data structures of the application. In doing this, the syntax specifi-
cation of the CIF language given in Chapter 2.2 should be adhered
to precisely. This result is most easily achieved if the code that
does the parsing is generated as automatically as possible from the
grammar of the language. Current ‘industrial’ practice in creating
parsers is based on use of commonly available tools for lexical
scanning of tokens and parsing of grammars based on lex (Lesk &
Schmidt, 1975) and yacc (Johnson, 1975). Two accessible descen-
dants of these programs are flex (by V. Paxson et al.) and bison (by
R. Corbett et al.). See Fig. 5.1.3.5 for an example of bison data in
building a CIF parser. Both flex and bison are available from the
GNU project at http://www.gnu.org.

Neither flex nor bison is used directly by the final application.
Each may be used to create code that becomes part of the applica-
tion. For example, both are used by CifSieve to generate the code
it produces. There is an important division of labour between flex
and bison; flex is used to produce a lexicographic scanner, i.e. code
that converts a string of characters into a sequence of ‘tokens’. In
CIF, the important tokens are such things as tags and values and
reserved words such as 1oop . Once tokens have been identified,
responsibility passes to the code generated by bison to interpret.
In practice, because of the complexities of context-sensitive man-
agement of white space to separate tokens and the small number
of distinct token types, flex is not always used to generate the lex-
icographic scanner for a CIF parser. Instead, a hand-coded lexer
might be used.

The parser generated by bison uses a token-based grammar and
actions to be performed as tokens are recognized. There are two
major alternatives to consider in the design: event-driven interac-
tion with the application or building of a complete data structure to
hold a representation of the CIF before interaction with the appli-
cation. The advantage of the event-driven approach is that a full
extra data structure does not have to be populated in order to access
a few data items. The advantage of building a complete representa-
tion of the CIF is that the application does not have to be prepared
for tags to appear in an arbitrary order.

5.1.4. Conclusion

Making CIF-aware applications is a demanding, but manageable,
task. A software developer has the choice of using external filters,
using existing libraries and APIs, or of building CIF infrastructure
from scratch. The last choice presents an opportunity to tune the
handling of CIFs to the needs of the application, but also presents
the risk of creating code that does not conform to CIF specifica-
tions. One can never know for certain how a new application may
be used in the future. If there is any doubt that an application built
from scratch will conform to CIF specifications, prudence dictates
that one should use filter programs or well tested libraries and APIs
in preference to cutting corners in building an application from
scratch.

We are grateful to Frances C. Bernstein for her helpful comments
and suggestions.

References

Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a
million crystal structures and rising. Acta Cryst. BS8, 380-388.

Allen, F. H., Kennard, O., Motherwell, W. D. S., Town, W. G. & Watson,
D. G. (1973). Cambridge Crystallographic Data Centre. Il. Structural
Data File. J. Chem. Doc. 13, 119-123.

Andrews, N. (1987). Rich Text Format standard makes transferring text
easier. Microsoft Syst. J. 2, 63-67.

Berners-Lee, T. (1989). Information management: a proposal. Inter-
nal Report. Geneva: CERN. http://www.w3.org/History/1989/proposal-
msw.html.

Bernstein, F. C. & Bernstein, H. J. (1996). Translating mmCIF data into
PDB entries. Acta Cryst. AS2 (Suppl.), C-576.

Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice,
M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M.
(1977). The Protein Data Bank: a computer-based archival file for
macromolecular structures. J. Mol. Biol. 112, 535-542.

Bernstein, H. J. (1997). cif2cif — CIF copy program. Bernstein +
Sons, Bellport, NY, USA. Included in http://www.bernstein-plus-
sons.com/software/ciftbx.

Bernstein, H. J. & Bernstein, E. C. (2002). YAXDF and the interaction
between CIF and XML. Acta Cryst. A58 (Suppl.), C257.

Bernstein, H. J., Bernstein, F. C. & Bourne, P. E. (1998). CIF applications.
VIII. pdb2cif: translating PDB entries into mmCIF format. J. Appl.
Cryst. 31, 282-295. Software available from http://www.bernstein-
plus-sons.com/software/pdb2cif.

Bray, T., Paoli, J. & Sperberg-McQueen, C. (1998). Extensible
Markup Language (XML). W3C recommendation 10-February-1998.
http://www.w3.0org/TR/1998/REC-xml-19980210.

Cambridge Structural Database (1978). Cambridge Crystallographic
Database User Manual. Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge, England.

Chang, W. & Bourne, P. E. (1998). CIF applications. IX. A new approach
for representing and manipulating STAR files. J. Appl. Cryst. 31, 505—
509.

Diamond, R. (1971). A real-space refinement procedure for proteins. Acta
Cryst. A27, 436-452.

Dubuisson, O. (2000). ASN.1 — communication between heterogeneous
systems. San Francisco, CA: Morgan Kaufmann. (Translated from the
French by P. Fouquart.)

Flack, H. D., Blanc, E. & Schwarzenbach, D. (1992). DIFRAC, single-
crystal diffractometer output-conversion software. J. Appl. Cryst. 25,
455-459.

Hall, S. R. (1993). CIF applications. IV. CIFtbx: a tool box for manipu-
lating CIFs. J. Appl. Cryst. 26, 482494,

Hall, S. R. & Bernstein, H. J. (1996). CIF applications. V. CIFtbx2:
extended tool box for manipulating CIFs. J. Appl. Cryst. 29, 598-603.

Hall, S. R. & Sievers, R. (1993). CIF applications. I. QUASAR: for
extracting data from a CIF. J. Appl. Cryst. 26, 469-473.

Hammersley, A. P. (1997). FIT2D: an introduction and overview. ESRF
Internal Report ESRFO7HAO2T. Grenoble: ESRF.

Heller, S. R., Milne, G. W. A. & Feldmann, R. J. (1977). A computer-
based chemical information system. Science, 195, 253-259.

Hester, J. R. & Okamura, F. P. (1998). CIF applications. X. Automatic
construction of CIF input functions: CifSieve. J. Appl. Cryst. 31, 965—
968.

ISO (1986). ISO 8879. Information processing — Text and office systems
— Standard Generalized Markup Language (SGML). Geneva: Interna-
tional Organization for Standardization.

ISO (2002). ISO/IEC 8824-1. Abstract Syntax Notation One (ASN.I).
Specification of basic notation. Geneva: International Organization for
Standardization.

Johnson, S. C. (1975). YACC: Yet Another Compiler-Compiler. Bell Lab-
oratories Computing Science Technical Report No. 32. Bell Labora-
tories, Murray Hill, New Jersey, USA. (Also in UNIX Programmer’s
Manual, Supplementary Documents, 4.2 Berkeley Software Distribu-
tion, Virtual VAX-11 Version, March 1984.)

Keller, P. A. (1996). A mmCIF toolbox for CCP4 applications. Acta Cryst.
AS2 (Suppl.), C-576.

references

http://it.iucr.org/Ga/ch5o1v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

