
5.2. STAR File utilities

BY N. SPADACCINI, S. R. HALL AND B. MCMAHON

5.2.1. Introduction

The STAR File, described in Chapter 2.1, has a simple format
intended to allow the flexible and extensible representation of data
without regard to specific data models. In crystallography and
related disciplines, the restricted format chosen for the Crystallo-
graphic Information File (CIF, Chapter 2.2) and Crystallographic
Binary File (CBF, Chapter 2.3) lends itself to rather flat data mod-
els. In particular, the relationships between data items enforced
through DDL2 dictionaries in applications such as mmCIF (Chap-
ter 3.6) are essentially equivalent to the data structures and rela-
tionships of a relational database. Of course, properly normalized
relational tables can represent a hierarchy of structure, although
this may not be an efficient representation.

There are other applications, such as the molecular information
file (MIF, Chapter 2.4), that make use of additional features of
the STAR File, such as multiple-level loop structures, global vari-
able scoping and data-instance encapsulation in save frames. These
applications may more efficiently represent certain hierarchical or
object-oriented data models.

While particular applications require software tools tailored to
their specific purposes, it is helpful to have programs or libraries
capable of manipulating arbitrary STAR File data, relying solely
on the syntax rules and format of the STAR File and taking no
account of the semantic content of the included data.

In this chapter, the stand-alone program Star Base is described
in detail. This program uses a local query language to demonstrate
the ability to retrieve or re-order data with their associated context.
There is also a brief review of Star.vim and StarMarkUp, appli-
cations for editing and browsing STAR Files. The chapter con-
cludes by reviewing a number of object classes and libraries for
a variety of STAR and generalized CIF applications: prototypi-
cal approaches OOSTAR and CIF++, CIFOBJ and starlib used by
major macromolecular data repositories, and the document-object
model package StarDOM.

5.2.2. Data instances and context

In a STAR File, a data item consists of a value, which is
a simple ASCII character string, and an associated identifier
or data name which precedes the value, and is invariably an
ASCII character string beginning with an underscore character
and not including any white-space character, such as _date or
_chemical_formula_sum. (The detailed and formal syntax rules
for STAR Files are given in Chapter 2.1.)

5.2.2.1. Single and multiple values

A data item may have a single value, in which case the data
name may immediately precede the data value, separated only by
white space, e.g.

Affiliations: N. SPADACCINI, School of Computer Science and Software Engi-
neering, University of Western Australia, 35 Stirling Highway, Crawley, Perth,
WA 6009, Australia; SYDNEY R. HALL, School of Biomedical and Chemical
Sciences, University of Western Australia, Crawley, Perth, WA 6009, Australia;
BRIAN MCMAHON, International Union of Crystallography, 5 Abbey Square,
Chester CH1 2HU, England.

_chapter_title ’STAR File utilities’

Alternatively, a data item may occur multiple times, in a vec-
tor or a list. In such a case, the data identifiers appear in a loop
header and the values follow in the order of presentation in the
loop header. For the simple example of a tabular array, the loop
header plays the role of column header, e.g.

loop_
_chapter_number
_chapter_title

5.2 ’STAR File utilities’
5.3 ’Syntactic utilities for CIF’

Here the instances of the data item identified by the data name
_chapter_number have two values, 5.2 and 5.3. Likewise the
instances of the data item identified by _chapter_title have two
values.

Note an important point: the example has been chosen to sug-
gest to the reader a tabular relationship between the two data items,
and in many STAR File applications such a relationship is intended
and perhaps formalized through an external dictionary defining the
relationships between these data names. However, the existence of
such a relationship is not mandated by the STAR File syntax. It is
legitimate for a generic STAR application to extract a single data
item from such an aggregated loop without making any supposi-
tion about its relationship with other data items in the same loop.
(It should be emphasized that in practice such physical juxtaposi-
tion of data items will almost invariably represent a real relation-
ship, and that most application-specific programming will depend
on this fact; but it is not an essential component of STAR in its
most abstract form.)

It is also axiomatic that the ordering of the multiple val-
ues within a list structure has no intrinsic significance in the
STAR paradigm. (Again, specific applications may override this
by enforcing an ordering, but this is not fundamental to STAR.)

5.2.2.2. Loop packets and context within lists

Where multiple data names are declared in a loop header, STAR
does however enforce the notion of a ‘loop packet’. The loop
packet is the data structure including all individual data values at a
particular iteration through the loop. Hence, in the simple example
above, 5.2 and STAR File utilities comprise the tuple of val-
ues in a single loop packet. For the single level of loop considered
so far, the loop packet plays the role of a table row.

For nested loops, the situation is more complex. Consider Fig.
5.2.2.1, which is an example of quantum chemistry basis sets
for hydrogen and lithium. (The examples in this chapter are
derived from various test applications, and do not represent spe-
cific adopted exchange protocols in the selected subject areas.) For
each element, a list of basis sets is presented, each containing a
set of parameters and a table of functional values. At the outer-
most level of looping in this example, a loop packet comprises
all the data associated with an individual atom type, for example
hydrogen. At the next inner level of looping, a loop packet corre-
sponds to an individual basis set (including its embedded table of

488

International Tables for Crystallography (2006). Vol. G, Chapter 5.2, pp. 488–498.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch5o2v0001/

5.2. STAR FILE UTILITIES

data_Gaussian

loop_
_basis_set_atomic_name
_basis_set_atomic_symbol
_basis_set_atomic_number
_basis_set_atomic_mass
loop_
_basis_set_contraction_scheme
_basis_set_funct_per_contraction
_basis_set_primary_reference
_basis_set_source_exponent
_basis_set_source_coefficient
_basis_set_atomic_energy

loop_
_basis_set_function_exponent
_basis_set_function_coefficient

hydrogen H 1 1.0079

(2)->[2] 1: PKC1.1.1 R44 . -0.485813

1.3324838E+01 1.0
2.0152720E-01 1.0 stop_

(2)->[2] 1: PKC1.2.1 R33 . -0.485813
1.3326990E+01 1.0
2.0154600E-01 1.0 stop_

(2)->[1] 2 PKC1.14.1 R24 R24 -0.485813
1.3324800E-01 2.7440850E-01
2.0152870E-01 8.2122540E-01 stop_

(3)->[2] 2:1 PKC1.23.1 R75 R75 -0.496979
4.5018000E+00 1.5628500E-01
6.8144400E-01 9.0469100E-01
1.5139800E-01 1.0000000E+01 stop_ stop_

lithium Li 3 6.94

(4)->[4] 1: PKC3.1.1 R44 . -7.376895

3.4856175E+01 1.0
5.1764114E+00 1.0
1.0514394E+00 1.0
4.7192775E-02 1.0 stop_

(9,4)->[3,2] 7:2:1,3:1
PKC3.9.1 R2 R98 -7.431735

921.271 0.001367 138.730 0.010425
31.9415 0.049859 9.35329 0.160701
3.15789 0.344604 1.15685 0.425197
0.44462 0.169468 0.44462 -0.222311
0.076663 1.116477 0.028643 1.0
1.488 0.038770 0.2667 0.236257
0.07201 0.830448 0.02370 1.0 stop_

(4,3)->[3,2] 4:2:1,2:1
PKC3.30.1 R77 R77 -7.419509

1.09353E+02 1.90277E-02 1.64228E+01 1.30276E-01
3.59415E+00 4.39082E-01 9.05297E-01 5.57314E-01

5.40205E-01 -2.63127E-01 1.02255E-01 1.14339E+00
2.85645E-02 1.00000E+00

5.40205E-01 1.61546E-01 1.02255E-01 9.15663E-01
2.85645E-02 1.00000E+00 stop_ stop_

Fig. 5.2.2.1. Example quantum chemistry basis set functions in STAR File format.

coefficients). At the innermost loop level, a loop packet is simply
a row within a table of exponents and coefficients of the basis set
function.

If one were to treat this example file as a database of indeter-
minate structure and query the values associated with one of the
data names, for example, _basis_set_function_exponent, one
would retrieve a series of strings 1.3324838E+01, 2.0152720E-01
etc. However, the value strings in themselves are insufficient to
allow the reconstitution of any data structure in the file. One also
needs an expression of the levels within the nested loop struc-
ture at which the values were located, and an indication that they
were associated with different packets of information at those var-
ious levels. This additional information about the context of each
value is sufficient to determine its position within the data structure

data_Gaussian
loop_

loop_
loop_

_basis_set_function_exponent
stop_

stop_

1.3324838E+01 2.0152720E-01 stop_
1.3326990E+01 2.0154600E-01 stop_
1.3324800E-01 2.0152870E-01 stop_
4.5018000E+00 6.8144400E-01 1.5139800E-01 stop_

stop_

3.4856175E+01 5.1764114E+00 1.0514394E+00
4.7192775E-02 stop_

921.271 138.730 31.9415 9.35329 3.15789 1.15685
0.44462 0.44462 0.076663 0.028643 1.488 0.2667
0.07201 0.02370 stop_

1.09353E+02 1.64228E+01 3.59415E+00 9.05297E-01
5.40205E-01 1.02255E-01 2.85645E-02 5.40205E-01
1.02255E-01 2.85645E-02 stop_

stop_

Fig. 5.2.2.2. Retrieval from the example file in Fig. 5.2.2.1 of the value of
_basis_set_function_exponent with associated context.

without any other a priori information regarding the data model.
The context is most easily expressed by listing the output values in
STAR File format.

Fig. 5.2.2.2 is an output listing of the requested values for this
example, where the context is expressed as the innermost of three
nested loop levels and distinct packets at this level are indicated. It
will be seen also that by tracing the disposition of stop_ words the
embedding within higher-level loop packets can also be inferred.

5.2.2.3. Context in data sets

Another indicator of context in the previous example is the data-
block header, which was reproduced in the output of Fig. 5.2.2.2.

The STAR File allows data instances in three types of location:
in a data block, in a save frame or in a global block.

The usual way to partition a STAR File is by data blocks; each
such block represents a data set in which a data name (associated
with a single or multiple values) may be declared once only.

Data blocks may include save frames. A save frame is an encap-
sulated subsidiary data set, effectively insulated from the contents
of the surrounding data block, in which data items may occur that
have the same names as items in the parent data block. Indeed,
‘parent’ is potentially a misleading term, since no relationship is
implied between the data within a save frame and those in the data
block in which the save frame occurs. A reference to a save frame
may, however, occur as a data value within the data block where
the save frame is specified. Recall from Section 2.1.3.6 that save
frames within a data block are uniquely identified by the frame-
code header.

Global blocks may also occur in a STAR File, preceding or inter-
spersed between data blocks. For each data item defined within a
global block, that definition is inherited by each succeeding data
block that does not contain an internal definition of a data item
with the same name. If there is a definition of a data item with
the same name within a data block, that internal definition over-
rides the global definition within that data block. The situation is
then re-evaluated in the next data block. If that data block does not
contain an internal definition, the global definition holds.

489

5. APPLICATIONS

data_reaction

save_methyl
loop_

_atom_identity_node
_atom_identity_symbol 1 C 2 C

loop_
_attached_hydrogen_node
_attached_hydrogen_count 1 3

save_

save_ethyl
loop_

_atom_identity_node
_atom_identity_symbol 1 C 2 C 3 C

loop_
_attached_hydrogen_node
_attached_hydrogen_count 1 3 2 3

save_

save_R1
loop_

_variable_alternative_number
_variable_identifier_symbol
_variable_node 1 $methyl 1 2 $ethyl 1

save_

save_carboxylic_acid
loop_

_atom_identity_node
_atom_identity_symbol 1 $R1 2 C 3 O 4

O
loop_

_attached_hydrogen_node
_attached_hydrogen_count 2 0 3 0 4 1

save_

loop_
_reaction_component_number
_reaction_component_symbol
_reaction_component_type

1 $carboxylic_acid reactant

Fig. 5.2.2.3. Example STAR data structure where save frames encapsulate related
data sets. See text for details.

The scope of data values is well defined (see Section 2.1.3.9).
Only data expressed in a global block have values that are inher-
ited in later portions of the STAR File. Data values in data blocks
or save frames are restricted in scope to the current data block or
save frame, respectively.

A consequence of these rules of scope and encapsulation is
that a full description of the context of a STAR data value must
also reflect any values carried through as global data or by de-
referencing associated save frames. The results are not always intu-
itive.

Consider Fig. 5.2.2.3, which represents a partial description of
a chemical reaction where one of the reactants is expressed as
a generic structure described by the save frame save_R1. How-
ever, the generic structure in this case is restricted to a small
number of alkyl groups, each described in its own save frame.
Setting aside this prior knowledge, we see that a request for
_atom_identity_symbol must return not only the data values in
their embedded save frames, but also the save frames in their
entirety and the higher-order data values that reference the match-
ing save frames. It is only in this way that we can guarantee that
the value can be used by any application. Fig. 5.2.2.4 demonstrates
the full context of the returned requested data values.

Notice that the requested item occurs (among other places) in
the save frame save_carboxylic_acid and this instance of the

data_reaction

save_methyl
loop_

_atom_identity_node
_atom_identity_symbol 1 C 2 C

loop_
_attached_hydrogen_node
_attached_hydrogen_count 1 3

save_

save_ethyl
loop_

_atom_identity_node
_atom_identity_symbol 1 C 2 C 3 C

loop_
_attached_hydrogen_node
_attached_hydrogen_count 1 3 2 3

save_

save_R1
loop_

_variable_alternative_number
_variable_identifier_symbol
_variable_node 1 $methyl 1 2 $ethyl 1

save_

save_carboxylic_acid
loop_

_atom_identity_symbol $R1 C O O
save_

loop_
_reaction_component_symbol $carboxylic_acid

Fig. 5.2.2.4. Context for the requested values of _atom_identity_symbol in the
preceding example. See text for details.

item is presented solely in the context of the save header and clo-
sure strings (it is shown in italics in Fig. 5.2.2.4). However, one
of the values extracted from this location is the save-frame refer-
ence pointer $R1 that identifies save_R1, and the complete con-
tents of this save frame are presented (because the data struc-
ture represented by the save frame is itself one of the values of
the requested data item). Further de-referencing of the save-frame
pointers within save_R1 results in the extraction also of the com-
plete save frames save_methyl and save_ethyl. In this example
it is coincidental that there are instances of the requested data item
(_atom_identity_symbol) within these returned save frames as
well.

Notice, however, that establishing the full context of the
returned data demands also that data values referencing the
save_carboxylic_acid frame be presented. In this example, the
value of _reaction_component_symbol at the outermost level of
the data block is returned, a result that may at first seem surprising.
It is only in this way that one can be sure that an arbitrary appli-
cation will have access to the full semantic information carried by
the data item.

Data values declared in global blocks should be presented in the
same spirit of supplying the complete context in which the value
was instantiated, and not simply the value in isolation. For exam-
ple, given the trivial STAR File

global_
_example foo

data_1
data_2

_example bar

a request for _example should return the identical file, not the inter-
polated result

490

5.2. STAR FILE UTILITIES

data_1
_example foo

data_2
_example bar

despite the latter’s equivalence purely in terms of the non-
contextual values returned.

5.2.3. Star Base: a general-purpose data extractor for STAR
Files

The stand-alone application Star Base (Spadaccini & Hall, 1994)
provides a facility for performing database-style queries on arbi-
trary STAR Files. It is generic in nature and makes no assumptions
about the nature or organization of the data in a STAR File. It may
indeed be used as an application-specific database tool if the user
has prior knowledge of the relationships between included data
items. However, by faithfully returning context as well as value in
the way outlined in Section 5.2.2, it can be applied to any STAR
File even without such prior knowledge.

5.2.3.1. Program features

Star Base is a fully functional STAR File parser and may be
used to test the syntactic validity of an input STAR File. It may
be used to write an input STAR File directly to the output stream,
while validating the structural integrity as the contents are parsed.
The input format and comments are discarded on output.

Given a valid input file, Star Base guarantees to write output in
fully compliant STAR format.

If a data name is supplied as a request item, Star Base will
return the single or multiple values associated with that data name
and their associated context according to the principles of Section
5.2.2, i.e. all loop structures, data-block headers and global head-
ers will be returned, and save frames will be expanded as required
to accommodate de-referencing of frame codes as returned values.

Where multiple data items are requested, Star Base will write
their occurrences to its output stream in the order they were
requested, not in the order of appearance in the input file. This
may disturb data relationships that are implicit in the ordering or
association of values in the input file, but it is the responsibility
of the user to track and retain such associations where they are an
essential part of an application-level data model. As emphasized
before, a generic STAR tool will make no assumptions about data
models and will simply return values and contexts as requested.

To illustrate the effect of this, consider a request for the follow-
ing data items from the example file of Fig. 5.2.2.1:

_basis_set_atomic_name
_basis_set_atomic_symbol
_basis_set_contraction_scheme

Star Base will return the following result:

data_Gaussian
loop_

_basis_set_atomic_name
_basis_set_atomic_symbol
loop_
_basis_set_contraction_scheme
stop_

hydrogen H
(2)->[2] (2)->[2] (2)->[1] (3)->[2] stop_

lithium Li
(4)->[4] (9,4)->[3,2] (4,3)->[3,2] stop_

However, if the same items are requested in a different order,

_basis_set_atomic_name
_basis_set_contraction_scheme
_basis_set_atomic_symbol

the result is structured differently:

data_Gaussian
loop_

_basis_set_atomic_name
loop_
_basis_set_contraction_scheme
stop_
_basis_set_atomic_symbol

hydrogen
(2)->[2] (2)->[2] (2)->[1] (3)->[2] stop_

H
lithium

(4)->[4] (9,4)->[3,2] (4,3)->[3,2] stop_
Li

In the examples so far, one or more data items have been
requested by name. Star Base extends the type of requests that
can be made through its own query language. This gives it much of
the power of a database query language such as SQL. Three types
of query are supported, known as data, conditional and branching
requests.

A data request is a straightforward generalization of the request
by data name. Individual data items may be requested by name,
as may individual data blocks or save frames. Wild carding is per-
mitted to generalize the requests. More details are given in Section
5.2.3.2.

A conditional request involves one or more conditions; only
data items satisfying the conditions are returned. More details are
given in Section 5.2.3.3.

A branching request applies similar conditions to establish the
context in which matching data items occur within the file, but
may also apply scoping rules to select among the available con-
texts. Only data items matching both the conditions imposed on
their values and the requested scope are returned. It is the exis-
tence of such branching conditions that gives Star Base the ability
to select data matching the specific requirements of overlying data
models. Again, however, it is emphasized that the program itself
operates without any semantic awareness of the significance of the
data that is implied within the overlaid data model. More details
on branching requests are given in Section 5.2.3.4.

5.2.3.2. The Star Base data request

A data request is the simplest type of query used to extract
single items from a file. It may be formed from any of the fol-
lowing string types:

(i) a name string, e.g. _atom_identity_symbol;
(ii) a block string, e.g. data_Gaussian;
(iii) a frame string, e.g. save_methyl.
In accordance with the principles set out earlier in this chapter,

data requests satisfy the following rules:
(i) Requested data items are returned with their associated con-

text (i.e. including the headers of any containing data blocks, save
frames and loop structures).

(ii) A request for a data block returns all preceding global blocks
(since the data block will contain by inheritance all values in the
global blocks).

(iii) A request for a save frame also returns the header of the data
block encompassing the save frame. All frame-pointer codes are
resolved so that if a requested save frame contains pointer codes to
other save frames, these are also returned.

(iv) A request for global_ returns all global blocks, together
with all data-block headers in their scope.

(v) The request need not be specified explicitly. Two wild-card
characters are permitted. An asterisk (*) represents any sequence

491

5. APPLICATIONS

Table 5.2.3.1. Permitted constructions for a Star Base conditional request

<data request>
<data request> <operator> <text string>

<conditional request> & <conditional request>
<conditional request> | <conditional request>
!<conditional request>

of characters and a question mark (?) represents any single charac-
ter.

(vi) A request for looped data returns the items in the order
requested, making any necessary adjustments to the structuring of
nested loops to preserve the original context.

(vii) A request for data within a save frame returns those items
plus the associated context.

(viii) If a requested data item includes a save-frame pointer as a
value, the referenced save frame is returned intact. All other point-
ers contained within the returned data are resolved.

(ix) A request for a data item in a global data block will also
return the data-block headers within the scope of the global block.

(x) The scope of a data request is the entire input file. Control of
the search scope is only possible within branching requests.

5.2.3.3. The Star Base conditional request

While a data request allows retrieval of data items according to
name, conditional requests allow retrieval of data items by value.
The general form of a conditional request may be characterized as
<data request><operator><text string>, where <data request>
is any data request as defined in the preceding section, <operator>
is any of the test operators defined below, and <text string> is a
string pattern against which values of data items retrieved by the
data request are matched according to the operator specified.

Conditional requests may be combined by set operators &, | and
! to provide logical AND, OR and NOT tests. Table 5.2.3.1 lists
the allowed constructions for a conditional request. A bare data
request is considered a degenerate case of a conditional request.

The construction <conditional request> & <conditional
request> allows for the conjunction of conditionals. All data are
returned (including context) from the intersection of sets of data
that individually satisfy the conditions to be a non-empty set.

It is important to note that the conjunction of conditionals based
on different data names is the empty set.

The construction <conditional request> | <conditional
request> allows for the disjunction of conditionals. All data are
returned (including context) from the union of sets of data that
individually satisfy the conditions to be a non-empty set.

The construction !<conditional request> allows for the nega-
tion or complement of conditionals. All data are returned (includ-
ing context) from the universal set of data that do not satisfy the
conditions of the conditional request. The universal set is defined
as the input file.

Table 5.2.3.2 lists the permitted value-matching operators when
a retrieved data value is compared with a target text string in
the basic test <data request><operator><text string> described
above. (If the <text string> contains white-space characters, it
must be quoted with matching single or double quotes. The test
is performed on the value of the text string, i.e. the complete text
string including white-space characters but omitting the surround-
ing quote characters.)

Two classes of operators are defined. Text operators may be
used to test for string equality, substring containment or greater
and lesser values (where the ‘greater’ and ‘lesser’ values for text
strings are based on the ASCII character set ordering sequence).

Table 5.2.3.2. Value-matching operators in Star Base conditional
requests

Requests are of the form <data request> <operator> <text string>. The second
column describes the relationship that data identified by the <data request> must
satisfy against the <text string> in order to be returned as part of the result set.

Operator Relationship

Text comparison operators:
∼= Is identically equal to
?= Includes as a substring
∼< Is less than (in ASCII order)
∼> Is greater than (in ASCII order)
∼!= Is not identically equal to
?!= Does not include as a substring
∼<= Is not greater than (in ASCII order)
∼>= Is not less than (in ASCII order)

Numerical comparison operators:
= Is equal to
< Is less than
> Is greater than
!= Is not equal to
<= Is not greater than
>= Is not less than

These tests are valid for any STAR application. Numerical oper-
ators permit comparison of the numerical values implied by the
returned data-value strings. Recall from Chapter 2.1 that data val-
ues in STAR are specified only as character strings. Casting to dif-
ferent types may be performed by specific applications, but is not
defined for arbitrary STAR applications. Nevertheless, Star Base
recognizes that a majority of STAR applications will in fact spec-
ify numeric types, and therefore allows for numerical compar-
isons based on interpretations of certain value strings according to
the conventions adopted by CIF for the numb data type (Section
2.2.7.4.7.1). Such values may be given as integers, real numbers or
in scientific notation.

5.2.3.4. The Star Base branching request

Both conditional and data requests will retrieve matching data
items wherever they may be found in the input file; the scope of
the query in both cases is the entire file.

The top-level query type supported by Star Base, the branch-
ing request, allows selection of sub-requests based on the results
of prior tests, and also allows the narrowing or expansion of the
scope of a request. The effect is to permit extensive control over
the selection of data matching complex conditions. It is this which
gives Star Base the power of a database query language.

Note again that the user will in general need prior knowledge of
the arrangement of data items within a STAR File in order to com-
pose meaningful requests; Star Base is agnostic about the organi-
zation and structure of the contents of a data file and will simply
return exactly those data items and their context that match the
specified conditions.

A branching request takes the following form:
if <condition> <branch request>

[else <branch request>]
[unknown <branch request>]

endif
The <condition> has exactly the same form as a conditional

request, but does not return data to the calling process. It returns
only a logical value that is used to determine which branch to eval-
uate. This logical return value may be TRUE if the condition is sat-
isfied, UNKNOWN if the condition is not satisfied because there
was no occurrence of a requested data name within the current

492

5.2. STAR FILE UTILITIES

scope of the query, or FALSE if the condition is not met other-
wise.

The branching request must have a condition and a branch
request that is made if the condition returns TRUE. The other pos-
sible branches are optional. The unknown branch, if present, is
executed when the condition returns a value of UNKNOWN. If
there is no unknown branch, then the default truth value is set
as FALSE (i.e. a return value of UNKNOWN is treated as equiv-
alent to FALSE) and the else branch is executed if present. It is
possible to override this behaviour by using the special operator
assume true before a condition. This operator forces the default
truth value to TRUE when a condition returns an UNKNOWN
value. It is a useful shorthand when the same branch request is
applied against a condition that is either TRUE or UNKNOWN.
The syntax is
assume true (<condition>).

A <branch request> (that is, the set of actual individual requests
within a branching request construct) has three possible forms:

(i) a conditional request,
(ii) a branching request,
(iii) scope <scope setting> <branch request> endscope .

Note carefully the different contexts in which branch requests and
nested branching requests may occur.

scope <scope setting> specifies the range of data to be
searched in the input file. The effect of the setting is closed by
the endscope statement. The permitted values of <scope setting>
are:

(i) data item restricts the branch request to the data items in
the condition,

(ii) loop packet restricts the branch request to the contents of
the loop packet in which data match the condition,

(iii) loop structure restricts the branch request to the loop
structure in which data match the condition,

(iv) save frame restricts the branch request to the contents of
the save frame in which data match the condition,

(v) data block restricts the branch request to the contents of
the data block in which data match the condition,

(vi) file specifies that the branch request applies to the contents
of the file containing data matching the condition (the default set-
ting).

The default scope is invoked when a scope <scope setting> is
not specified; in such a case the scope of the branch request is the
same as that of the condition.

Fig. 5.2.3.1 demonstrates the construction of a branch-
ing request that restricts the scope of the query. The two
requests in this figure are applied to the STAR File exam-
ple of Fig. 5.2.2.1. In Figure 5.2.3.1(a), the query is targeted
to retrieve all data items in a loop packet where the value
of _basis_set_contraction_scheme includes the substring (3),
provided that the value of _basis_set_atomic_name identically
matches the string value hydrogen in the next outer nested loop
packet. The data relevant to the contraction scheme labelled
(3)->[2] are returned. Note how the wildcard data request _*

retrieves the data items from the next outer loop structure in which
the requested data lie.

In the example of Fig. 5.2.3.1(c), the request for an unknown
data name cannot be matched within the input file, and the
unknown branch of the request is executed. In this case,
the secondary request is more specific (only data names
including the substring contraction are matched) and hence
only a few items from the second-level loop are returned.
Scopes can be expanded or contracted. If the example of Fig.
5.2.3.1(a) were to be modified by replacing the innermost

if_ _basis_set_atomic_name = hydrogen
scope_loop_packet_
if_ _basis_set_contraction_scheme ?= (3)
scope_loop_packet_
_*

endscope_
endif_
endscope_

endif_

(a)

data_Gaussian
loop_

_basis_set_atomic_name
_basis_set_atomic_symbol
_basis_set_atomic_number
_basis_set_atomic_mass

loop_
_basis_set_contraction_scheme
_basis_set_funct_per_contraction
_basis_set_primary_reference
_basis_set_source_exponent
_basis_set_source_coefficient
_basis_set_comments_index
_basis_set_atomic_energy

loop_
_basis_set_function_exponent
_basis_set_function_coefficient

stop_
stop_

hydrogen H 1 1.0079
(3)->[2] 2:1 PKC1.23.1 R75 R75 C13,C19 -0.496979

4.5018000E+00 1.5628500E-01
6.8144400E-01 9.0469100E-01
1.5139800E-01 1.0000000E+01
stop_

stop_

(b)

if_ _basis_set_atomic_name = hydrogen
scope_loop_packet_
if_ _basis_set_contraction_xxxxxx ?= (3)
scope_loop_packet_
_*

endscope_
unknown_

_*contraction*
endif_
endscope_

endif_

(c)

data_Gaussian
loop_

loop_
_basis_set_contraction_scheme
_basis_set_funct_per_contraction

stop_

(2)->[2] 1: (2)->[2] 1:
(2)->[1] 2 (3)->[2] 2:1
stop_

(d)

Fig. 5.2.3.1. Examples of branching requests and the results returned by Star Base
from the example file of Fig. 5.2.2.1. (a) A query designed to extract a data
structure relevant to one contraction scheme and one atom type. (b) The results
of that request. (c) A similar request, but with a branch followed when the con-
dition cannot be matched against a requested data item in the current scope, and
(d) the resulting output. See text for discussion.

scope_loop_packet_ declaration with scope_loop_structure_,
the query would proceed by testing for the existence of a con-
traction scheme value including the string (3) in the loop packet
relevant to the hydrogen results (as before). Finding that this con-
dition was satisfied, the result returned would be all data names in

493

5. APPLICATIONS

the encompassing loop structure – i.e. in this particular example,
the complete loop contents would be returned.

Note that Star Base faithfully returns context even in the pro-
cessing of complex branching requests. Therefore if, for example,
a save-frame pointer is returned as a data value following the pro-
cessing of a request, the associated save-frame contents will be
returned in full so that they are referenced in the returned STAR
data structure.

5.2.3.5. Implementation issues

Star Base is implemented in the C programming language, and
exploits Gnu’s flex and bison compiler-compiler system to gener-
ate a lexer and parser for the STAR File and a separate lexer and
parser for the Star Base query language.

The STAR File parser builds an in-memory representation
(much like most programming-language compilers) of the file con-
tents, and differs from similar applications that are based on a
single pass over a stream (like SAX for XML applications).

While a system like CIFtbx retains a block copy of the STAR
File in memory, the initial Star Base processing removes all com-
ments and formatting, and stores the meaningful tokens in a binary
tree representation. For each STAR File container (global block,
data block, save frame, loop or data item) there is a C structure
defined. For each of these there are additional structures defined
that hold sequences of containers. The nodes of this tree are pop-
ulated with these structures. Each leaf of the tree is the data item
consisting of the data name and its associated value. A binary tree
of the global-block sequences is built in reverse order (that is, in
an order reverse to that in which they appear in the file), mak-
ing it simple to identify the global values in scope for a specific
data block. It will be recalled that the STAR File semantics require
a backward scan through the file to pick up the global blocks in
scope.

The binary search algorithm employed is the classic tsearch of
Knuth (1973), which is part of the standard C libraries. Given mod-
ern computer systems, the implementation is extremely fast and
efficient. There are no files in existence whose size would test the
limits of Star Base.

The use of a binary tree simplifies the process by which a legit-
imate STAR File is returned as output by Star Base and also how
the scope over which the conditionals operate can be controlled
by the user. The program stores references to the data nodes of
the tree it needs to extract when outputting. Since the location in
the original data tree is always stored, the program is easily able
to reconstruct the correct structure of the file by walking the tree,
identifying the nodes that need to be output in addition to the data.

Star Base is by default the ‘gold standard’ for testing other
applications for correctness with respect to the syntax and seman-
tics of the STAR File. It can be said that the output of Star Base
is not optimal, since it is yet another STAR File and one which
is devoid of the original comments and formatting. However
Star Base is in essence an API for STAR File applications, rather
than a stand-alone program (although it is often used in that way).
Star Base was the platform from which BioMagResBank’s starlib
(Section 5.2.6.4) was developed.

5.2.4. Editing STAR Files with Star.vim

The vim editor supports syntax highlighting for a wide variety
of languages through syntax definition rules. The definition rules
for STAR Files are simple and small in number. The entire syntax
is defined by 19 rules that include the regular expressions for the
STAR File keywords, data names, numbers, single- and double-

quoted strings, semicolon-delimited text and frame codes. The lan-
guage for defining a syntax in vim is very simple and very power-
ful. The constructs allow the user to define the syntax precisely
enough so that the system does not match patterns within other
patterns, unless directed to.

There are three types of syntax items: keyword, match and
region.

keyword can only contain keyword characters, no other syntax
items. It will only match with a complete word (there are no key-
word characters before or after the match). The rule for the STAR
syntax is

syn keyword strKeyword global_ save_ loop_ stop_

match is a match with a single regular expression (regexp) pat-
tern. The rule for matching on a save-frame code is

syn match strFramecode "$[ˆ \t]\+"

region starts at a match of the ‘start’ regexp pattern and ends
with a match with the ‘end’ regexp pattern. Any other text can
appear in between. There can be several ‘start’ and ‘end’ patterns
in the one definition. A ‘skip’ regexp pattern can be used to avoid
matching the ‘end’ pattern. There are a number of character offset
parameters that allow the user to redefine the start and end of the
matched text given the pattern that matches the regular expression.
Quite separately, one can define the region for highlighting, which
can be different from the matched text.

The rule that matches a double-quoted string is

syn region strString start=+ˆ"+ start=+\s\+"+ms=e
end=+" +me=e-1 end=+"\t+me=e-1 end=+"$+
contains=strSpecial " skip=+\\\\\|\\"+

In this rule, the beginning of the pattern is a double quote that is
either the first character on the line or that has one or more white-
space characters before it. The beginning of the matched string
(ms) is the end of the matched pattern (e). That is, the matched
string begins at the quote. The end pattern is a double quote fol-
lowed by a single space, a tab or an end of record. The end of
the matched string (me) is one character less than the end of the
matched pattern (e). That is, the trailing character after the clos-
ing double quote is not considered part of the matched string. By
default the characters between location ms and me are highlighted.
This too can be controlled, and by including hs = ms + 1 and
he = me − 1 the highlighted text would not include the delimiting
double quotes.

As these rules are based on regular expressions, there is no pos-
sibility of using them to validate the STAR File structure. However,
problems in the structure are often identifiable by unexpected or
irregular highlighted text [a fact often used in graphical CIF edi-
tors to help the user locate visually errors in syntax (see e.g. Sec-
tion 5.3.3.1.4)].

5.2.5. Browser-based viewing with StarMarkUp

StarMarkUp is a Tcl/Tk program that takes any STAR File as input
and outputs the contents as HTML. The output is a faithful copy
of the input, and there is no reformatting or deletion of content.

During transformation, the contents can be cross-referenced
against any other STAR File using HTML anchors. This feature
is particularly useful when marking up a data file, since the data
names contained within can be hyperlinked to their definition in
their dictionary. Furthermore, the definitions contained within the
dictionary can be hyperlinked to the DDL dictionary. StarMarkUp
makes no presumptions about the version of DDL employed,
the preferred dictionary structure or the specific application

494

5.2. STAR FILE UTILITIES

Fig. 5.2.5.1. Hyperlinking markup generated by StarMarkUp. The example is based
on an extended relational dictionary definition language, StarDDL.

of the STAR File. The program understands only the rules of a
legitimate STAR File.

StarMarkUp provides a number of hyperlinking facilities. Dur-
ing markup, it automatically hyperlinks frame-code values to the
internal save-frame block to which they point. As part of the same
process, StarMarkUp inserts anchors in all data and save-frame
blocks. It does this in anticipation that there may be the need to
hyperlink to these anchors from another STAR File. The most
obvious application for this is in the marking up of the DDL dic-
tionary. The list of anchors generated from this process can be
passed on to the discipline dictionary during its markup phase (Fig.
5.2.5.1). In this way, the tags used in the discipline dictionary to
define the data names can be made to point back to their entry
in the DDL dictionary. At the same time that the discipline dic-
tionary is being marked up, a list of its anchors is being gener-
ated (each anchor being to a data-item definition). This list is used
when marking up an instance of the discipline STAR data file to
hyperlink each data name back to its definition in the discipline
dictionary.

StarMarkUp comprises a hand-crafted tokenizer employing a
character buffer and one-character look-ahead to identify accepted
tokens. StarMarkUp does not build an internal representation of
the file, but functions as a streaming parser. The GetToken() func-
tion returns a structure consisting of the token type (an enumerated
set) and the token value (the lexeme associated with that token). In
most cases, the lexeme is marked up and injected into the out-
put stream. If the token is associated with a STAR File block, the
parser will recursively call a MarkUpBlock() function. A recursive
descent parser makes it very easy to treat all STAR File blocks
(global_, data_ and save_) in identical fashion.

StarMarkUp is implemented in Tcl/Tk for novelty and not
because of any particular superior qualities of the language and
its API. It is, however, fast and sufficiently flexible, and extensions
to the program can be rapidly implemented and tested.

5.2.6. Object-oriented STAR programming

The STAR File syntax is very simple but flexible, and suggests a
number of well defined data structures. ‘Scalar’ values (i.e. single
text strings identified by specific data names) are obvious, as are
‘vectors’ (multiple string values associated with a data name in
a loop_ declaration). ‘Matrices’ are constructed by associating
identical-length vector items in the same loop_ structure. Note that
these data structures are not true matrices, but arrays or tables of
column-addressable vectors. Column addressing arises from the
need to associate each set of values with a distinct data name in
the loop header declaration.

Through the nested loop construct in STAR, vector or matrix
elements are permitted within vectors or matrices. Save frames
provide addressable data structures containing one or more scalar,
vector or matrix components; and data blocks contain similar data
structures with the inclusion of embedded save frames.

This hierarchy of structure allows many other data models to
be mapped onto the STAR syntax. For example, STAR does not
in itself provide addressable rows in matrix structures, but such a
concept may be achieved in application-specific ways. For exam-
ple, the relational database structure of mmCIF and other DDL2
applications ensures that table rows can be identified by specific
key values. Loops of multiple values associated with a single data
name are similar to lists or one-dimensional arrays as defined in
many computer languages. Simple associative arrays, or ‘hashes’,
such as are used to great effect in Perl and Python, can be mod-
elled by designating the first value of a two-item loop structure
as the ‘key’ item, by analogy with the relational database exam-
ple above (in such an application the key value of course needs to
be unique). The hierarchy of nested loops can be used to model
certain types of complex structures such as might be defined in a
C-language ‘struct’, for example.

There is a natural possibility of representing particular well
defined data structures as ‘objects’ and handling STAR Files
by object-oriented programming techniques. Where applications
associate properties of specific data items with external reference
descriptions, as in the DDL dictionaries, the dictionary entries can
be considered to express types, relationships and even methods
associated with the object classes.

However, the versatility of the STAR syntax means that there are
many ways of designing STAR objects and their relationships, and
it is likely that the most useful efforts will be in designing appli-
cations for specific purposes or subject areas. Below we describe
a number of prototypes and implementations of object-oriented
STAR programming. Some are rather generic in outlook; others
are informed by the crystallographic viewpoint embodied in CIF.

5.2.6.1. OOSTAR

The OOSTAR approach (Chang & Bourne, 1998) developed and
tested an Objective-C (Pinson & Richard, 1991) toolset for STAR
representation. The developers selected Objective-C over the more
common C++ language because of its perceived advantages of (i)
loose data typing, (ii) run-time type checking and (iii) message-
passing ability. These were all seen to aid flexible software design,
an asset for applications built on the very flexible structure of the
STAR syntax itself.

Chang & Bourne constructed a set of classes built on the basic
objects item and value. Their model builds upwards through a
hierarchy of classes describing relationships between objects. The
ItemAssoc class contains data members corresponding to the data
item itself, its included value or set of values, and the data name
that is used to reference the item; the class also has pointers to

495

5. APPLICATIONS

previous and next elements to allow iteration. The StarAssoc class
contains methods for manipulating STAR objects through setting
and retrieval of data names and assignment of values. DataBlock
is the class containing all the lower-order items and associations,
and one or more such DataBlock classes comprise the StarFile
class.

The OOSTAR approach also provides Dictionary and Dictio-
naryElement classes so that STAR applications that do describe
element attributes in external dictionary files can make use of such
information.

Some sample applications were built with the class libraries of
the OOSTAR toolset, and they are described in Chang & Bourne
(1998). They include: simple converters of STAR data files to
HTML pages with hyperlinks to associated dictionary entries; a
query tool for retrieving the data values for a specific item spec-
ified by name within a specific data block; and a query mecha-
nism that retrieves a set of items from a STAR loop structure and
represents their values in an array, i.e. flattening if necessary any
nested loops into a purely tabular presentation. These query tools
are different from Star Base primarily in that they do not return
the context in which the data are found in the original file – their
interpretation depends on a detailed a priori understanding of the
target file structure.

This approach is rather different from the canonical description
of STAR given in this volume, and was never developed into full-
blown applications (in part because the developers recognized that
the Java language would provide a preferable platform for fur-
ther development). Nevertheless, it provides interesting ideas for
the developer considering building object-oriented applications for
STAR Files.

5.2.6.2. CIF++

CIF++ was a small library of classes designed by Peter Murray-
Rust during the time that DDL was being developed as a lan-
guage for representing the properties and attributes of STAR data
items (e.g. Murray-Rust, 1993). The purpose of this project was to
demonstrate the design of data classes that represented real-world
objects such as molecules and crystal cells. At a time when the
structure of CIF was under intense discussion, many of the classes
were potentially extensible to STAR features that were a superset
of those found in CIF.

While these classes were never developed into fully functional
applications, they demonstrated a potentially fruitful approach to
model representation and gave rise to the idea of including meth-
ods in STAR dictionary definitions, thus allowing STAR applica-
tions to dynamically associate algorithmic relationships and oper-
ations with data objects by parsing the methods description in
the dictionary definitions. This approach is currently being devel-
oped into a relational expression language for STAR called dREL
(Spadaccini et al., 2000).

The ideas behind CIF++ were further developed in a class
library for molecular representation called Democritos, and have
informed the representation of molecular and crystal structure in
Chemical Markup Language (CML) and in the structured docu-
ment browser Jumbo (Murray-Rust, 1998).

The CIF++ classes have been refactored into Java using the
W3C document object model (W3C, 2004) and other DOM-like
models. They are now based on an XML schema which is the
abstraction of the formal DDL1 specification (Chapter 2.5).

These are available as part of the Jumbo distribution at
http://cml.sf.net. The design involves an interface that would allow
the C++ classes to be recreated from the Java.

5.2.6.3. CIFOBJ

The CIFOBJ class library (Schirripa & Westbrook, 1996) was
developed to provide an object view of the mmCIF dictionary and
to complement the relational CIFLIB class library (Westbrook et
al., 1997) for handling mmCIF data. As such, it is very much
tuned to crystallographic applications and it handles only the sub-
set of STAR features used in CIF dictionaries. This does, however,
include some limited handling of save frames, and is therefore a
little more complex than applications interested only in CIF data
input/output processing.

CIFOBJ has two components. The first builds a persistent store
of objects of types item, subcategory, category and dictionary.
Each such object is a container for all relevant attributes permitted
for that object type. The object store is populated from the mmCIF
dictionary by the CIFOBJ loader class (using methods provided
by CIFLIB). This loader class assembles the dictionary objects and
passes them to an object-storage manager. The second component
of the CIFOBJ class library provides the methods necessary for
building dictionary objects from the persistent store and for pass-
ing attribute strings to procedures concerned with establishing the
integrity of data values.

The main reason for discussing this implementation here is
to indicate the rapid growth in complexity needed to impose
an application-specific object view on even a relatively simple
STAR data structure. In generic prototype STAR projects such as
OOSTAR, half a dozen or so classes and associated methods suffice
to represent the highest-level abstract concepts implied in STAR
constructions. In CIFOBJ, however, dozens of methods are asso-
ciated with dictionary access. Dictionary-driven validation of an
mmCIF numerical data value can involve:

(i) retrieval from the dictionary of the extended type declaration
associated with the data item;

(ii) validation of the basic type (i.e. that it is indeed numeric)
against the primitive data types supported by the dictionary;

(iii) validation of the extended type by regular-expression
matching of the string representation of the value against the
allowed patterns stored in the dictionary;

(iv) retrieval of any existing range constraints specified in the
dictionary and comparison with the data value;

(v) location and evaluation of any associated standard uncer-
tainty;

(vi) identification of the units in which the physical quantity is
expressed;

(vii) if necessary, conversion of the units according to the con-
version tables stored in the dictionary.

More complexity arises from the relationships between data
items expressed through dictionary attributes such as name alias-
ing, parent–child dependencies and category membership.

Nevertheless, the complexity of these relationships is an
indication of the richness of the metadata available through the
dictionary approach, and the availability of well defined object
representations simplifies the construction of well designed large-
scale application frameworks, such as underpin the Protein Data
Bank (Berman, Battistuz et al., 2002) and Nucleic Acid Database
(Berman, Westbrook et al., 2002).

5.2.6.4. starlib

BioMagResBank (BMRB) is a repository for NMR spec-
troscopy data on proteins, peptides and nucleic acids at the Uni-
versity of Wisconsin – Madison (Ulrich et al., 1989). For some
time, NMR data sets have been exchanged within this environ-
ment using STAR Files; an NMRStar data dictionary to define
the data names used for tagging NMR data is under development

496

5.2. STAR FILE UTILITIES

(BioMagResBank, 2004). The starlib class library was developed
at BMRB for handling NMRStar files, but its initial application
to such files independently of the prototype data dictionary means
that it is applicable to any STAR File. It does not provide a rela-
tional database paradigm (although this is a long-term goal). How-
ever, it does provide objects and methods suitable for searching
and manipulating STAR data.

Table 5.2.6.1 lists the top-level classes used in starlib. ASTnode
is a formal base class, providing the types and methods that can
be used in other derived classes. StarFileNode is the root parent
of all other objects contained in an in-memory representation of a
STAR File; in practice it contains a single StarListNode, which is
the list of all items contained in the file. BlockNode is a class which
contains a partition of the STAR File: the class handles both data
blocks and global blocks. Data-block names are stored in instances
of the HeadingNode object, which also holds save-frame identifi-
cation codes and is therefore useful for accessing named portions
of the file.

DataNode is a virtual class representing the types of data objects
handled by the library (accessed directly as DataItemNode, Data-
LoopNode and SaveFrameNode).

Looped data items are handled by a number of objects. Data-
LoopNameListNode is a list of lists of names in a loop. The first
list of names is the list of names for the outermost loop, the sec-
ond list of names is the list of names for the next nesting level and
so on. LoopNameListNode is a list of tag names representing one
single nesting level of a loop’s definition. LoopTableNode is a table
of rows in a DataLoopNode (not itemized in Table 5.2.6.1; it is an
object representing a list of tag names and their associated values,
a particular case of DataNode). starlib views a loop in a STAR file
as a table of values, with each iteration of the loop being a row
of the table. Each row of the table can have another table under
it (another nesting level), but such tables are the same structure
as the outermost one. Thus LoopTableNode stores a table at some
arbitrary nesting level in the loop. A simple singly nested loop will
have only one loop table node, but a multiply nested loop will have
a whole tree of loop tables. LoopRowNode is a single row of values
in a loop.

DataNameNode holds the name of a tag/value pair or a loop tag
name. DataValueNode is the type that holds a single string value
from the STAR file and the delimiter type that is used to quote it.

DataListNode and SaveFrameListNode store lists of data within
higher-order data objects or save frames, and are internal classes
rarely invoked directly by a programmer.

A number of observations may be made regarding this approach.
Firstly, the objects can be mapped with reasonable fidelity to the
high-level Backus–Naur form representation of STAR (Chapter
2.1). Secondly, it is computationally convenient to abstract com-
mon features into parent classes, so that, for example, individ-
ual data items, looped data and save frames are represented as
child objects of the DataNode object, and not themselves as first-
generation children of the base class. Thirdly, the handling of
nested loops may be achieved in different ways; starlib has cho-
sen a particular view that is perhaps well suited to relational data
models.

As expected within a programming toolkit, starlib offers a large
number of methods for retrieving STAR data values, adding new
data items, extending or re-ordering list structures, and performing
structural transformations of the in-memory data representation.
Unlike the stand-alone Star Base application, it does not guaran-
tee that output data will be in a STAR-conformant format; and
the programmer is left with the responsibility of validating trans-
formed data at a low level.

Table 5.2.6.1. Object classes for manipulating STAR data in starlib

ASTnode The base class from which all other classes are
derived

StarFileNode The STAR File object
StarListNode List of items contained in the STAR File
BlockNode A data or global block
HeadingNode Labels for major STAR File components
DataNode General class for data objects
DataLoopNameListNode List of lists of names in a loop
LoopNameListNode List of tag names representing one nesting loop

level
LoopTableNode Table of rows in a loop
LoopRowNode Single row of values in a loop
DataNameNode A data name
DataValueNode A single string value
DataListNode List of data within a higher-order data object
SaveFrameListNode List of data items allowed in a save frame

Nevertheless, this is a substantial and important library which,
as with CIFOBJ, has played an important role in the functioning of
a major public data repository. Development of the class libraries
continues, with a Java version now available.

5.2.6.5. StarDOM

A convenience of well designed object representations is that
effective transformation between different data representations
may be possible. The StarDOM package (Linge et al., 1999)
demonstrates a transformation from STAR Files to an XML rep-
resentation, where the tree structure of a STAR File as interpreted
in the starlib view above is mapped to a document object model
(DOM; W3C, 2004). This approach is similar to Jumbo, mentioned
above in Section 5.2.6.2.

A demonstration of StarDOM is the transformation of the com-
plete set of NMR data files at BioMagResBank to XML. The resul-
tant files can then be interrogated using the XQL query language
(Robie et al., 1998). In this example implementation, the target
XML document type definition (DTD) includes a small number of
XML elements matching the STAR objects global and data block,
save frame, list, data item, data name and data value. Particular
data names are recorded as values of the <NAME> element. The
authors of the StarDOM package are considering an extension in
which named data items map directly to separate XML elements;
the goal is to develop an NMR-specific DTD that is isomorphous
to the emerging NMRStar data dictionary.

References
Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E.,

Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P.,
Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N.,
Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). The Protein Data
Bank. Acta Cryst. D58, 899–907.

Berman, H. M., Westbrook, J., Feng, Z., Iype, L., Schneider, B. &
Zardecki, C. (2002). The Nucleic Acid Database. Acta Cryst. D58, 889–
898.

BioMagResBank (2004). NMR-STAR Dictionary. Version 3.0. (Under
development.) http://www.bmrb.wisc.edu/dictionary/3.0html/.

Chang, W. & Bourne, P. E. (1998). CIF applications. IX. A new approach
for representing and manipulating STAR files. J. Appl. Cryst. 31, 505–
509.

Knuth, D. E. (1973). The art of computer programming. Vol. 3, Sorting
and searching, pp. 422–447. Reading, MA: Addison-Wesley.

Linge, J. P., Nilges, M. & Ehrlich, L. (1999). StarDOM: from STAR format
to XML. J. Biomol. NMR, 15, 169–172.

Murray-Rust, P. (1993). Analysis of the DDL/dictionary parsing problem.
Proc. First Macromolecular Crystallographic Information File (CIF)
Tools Workshop, ch. 12. New York: Columbia University.

497

5. APPLICATIONS

Murray-Rust, P. (1998). The globalization of crystallographic knowledge.
Acta Cryst. D54, 1065–1070.

Pinson, L. J. & Richard, R. S. (1991). Objective-C object-oriented pro-
gramming techniques. Reading, MA: Addison-Wesley.

Robie, J., Lapp, J. & Schach, D. (1998). XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/pp/xql.html.

Schirripa, S. & Westbrook, J. D. (1996). CIFOBJ. A class library of
mmCIF access tools. Version 3.01 reference guide. Technical Report
NDB-269. Rutgers University, New Brunswick, New Jersey, USA.

Spadaccini, N. & Hall, S. R. (1994). Star Base: accessing STAR File data.
J. Chem. Inf. Comput. Sci. 34, 509–516.

Spadaccini, N., Hall, S. R. & Castleden, I. R. (2000). Relational expres-
sions in STAR File dictionaries. J. Chem. Inf. Comput. Sci. 40, 1289–
1301.

Ulrich, E. L., Markley, J. L. & Kyogoku, Y. (1989). Creation of a nuclear
magnetic resonance data repository and literature database. Protein
Seq. Data Anal. 2, 23–37.

W3C (2004). Document Object Model (DOM). http://www.w3.org/
DOM/.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). CIF applica-
tions. VI. CIFLIB: an application program interface to CIF dictionaries
and data files. J. Appl. Cryst. 30, 79–83.

498 references

http://it.iucr.org/Ga/ch5o2v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

