
5. APPLICATIONS

C The following common block corresponds to a
C structure defined in the C header, which is written
C to by routine ’cifsiv’. In order to correctly write
C to this common block, ’cifsiv’ should be called
C with a *third* argument which will always be
C ’blockbeg’.

REAL BLOCKBEG
CHARACTER*84 ERRORMES
INTEGER ERRORNUM
CHARACTER*84 mylabel(50)
REAL*8 atrat(50)
REAL*8 atratesd(50)
REAL*8 atsiteu(6,500)
REAL*8 atsiteuesd(6,500)
CHARACTER*84 extmet
REAL*8 reftot(2)
REAL*8 reftotesd(2)
COMMON/CIFCMN/BLOCKBEG,ERRORMES,ERRORNUM,mylabel,

*atrat,atratesd,atsiteu,atsiteuesd,extmet,reftot,
*reftotesd

Fig. 5.3.7.7. Fortran include file forcif.inc for an application built by BuildSiv from
the augmented DDL dictionary of Fig. 5.3.7.4.

PROGRAM FORGET
include ’forcif.inc’
call cifsiv("tbshort.cif","tbal03",blockbeg)
do i = 1,4

write(*,*) mylabel(i), atsiteu(1,i),
* atsiteu(2,i)
enddo
write(*,*) reftot(1)
write(*,*) extmet
end

Fig. 5.3.7.8. An example Fortran program designed to read CIF data as tagged in
the augmented DDL dictionary of Fig. 5.3.7.4.

always called ‘BLOCKBEG’. The input subroutine is thus called
from within a Fortran program by a line of the type

CALL CIFSIV(FILE, BLOCK, BLOCKBEG)

where FILE and BLOCK are, respectively, the name of the input
file and data block.

Fig. 5.3.7.7 is an example Fortran include file generated by
BuildSiv and Fig. 5.3.7.8 is an example application incorporating
this file. As with the C examples, the CIF data to be read are those
specified in the dictionary augmented according to Fig. 5.3.7.4.

It may be noted that the C header file generated by the For-
tran implementation of BuildSiv (and which is used directly by
the C object file produced) is callable by any other C program
or subroutine. The Fortran common block is represented by a C
structure named cifcmnptr, so that the variable names are stored
within that structure and must be addressed through the C → oper-
ator. That is, an additional C routine compiled in with the For-
tran example program of Fig. 5.3.7.7 would refer to the variable
holding the value of the input _refine_ls_extinction_method as
(char *)cifcmnptr->extmet.

5.3.8. Tools for mmCIF

The complex relationships between the components of a macro-
molecular structure at various levels of detail are richly described
by the data names in the mmCIF dictionary, but their number
and complexity demand more heavyweight tools for proper han-
dling. Input/output for small-molecule or inorganic structures can

often be handled by a simple CIF parse and identification of the
desired components of one or a few looped data structures. For
macromolecules, multiple categories must be loaded simultane-
ously, and the integrity of relationships between items in the dif-
ferent categories must be properly maintained. For this reason, the
most effective tools for mmCIF-based applications have high-level
interactions with the mmCIF or related dictionaries, and necessar-
ily involve more complex data manipulations.

In this section are discussed three software systems that are
available for work with macromolecular structures: CIFOBJ and
related libraries, which provide a long-established and complete
application program interface (API) to dictionaries and data files;
OpenMMS, an exciting development allowing abstract data rep-
resentations (based on the mmCIF dictionary definitions) to be
exchanged between applications using an intermediate middleware
layer; and mmLib, which is a Python toolkit for biomolecular struc-
ture applications. These latter two may come closer to the area
of domain-specific applications than most of the generic tools we
have discussed in this chapter. However, they demonstrate how the
abstract data model represented by the mmCIF dictionaries can
effectively be imported into a diverse range of programming envi-
ronments.

5.3.8.1. CIFOBJ and related libraries

Early in the development of the mmCIF dictionary, the Nucleic
Acid Database at Rutgers University (Berman et al., 1992) cre-
ated a number of CIF libraries and utilities to underpin data-
processing activities. Much of this development work was carried
across when the curatorship of the Protein Data Bank was trans-
ferred to the Research Collaboratory for Structural Bioinformatics
(RCSB; Berman et al., 2002), and the software provides the engine
for many of the robust and industrial-strength database operations
of these organizations.

CIFLIB (Westbrook et al., 1997) was an early class library, no
longer supported, that was developed to provide an API to macro-
molecular CIF data files and to the associated dictionaries (Chap-
ters 3.6 and 4.5) and underlying dictionary definition language
(DDL2) files (Chapter 2.6).

The RCSB Protein Data Bank now distributes object-oriented
parsing tools (CIFPARSE OBJ; Tosic & Westbrook, 2000) which
fully support CIF data files and their underlying metadata descrip-
tions in dictionaries and DDL2 attribute sets, and a comprehensive
library of access methods for data and dictionary objects at cate-
gory and item level.

The information infrastructure of the Protein Data Bank, built
upon these tools, is discussed in Chapter 5.5. All the software
produced for this purpose is distributed with full source under
an open-source licence, to promote the development of mmCIF
tools and to encourage interoperability with other software envi-
ronments.

5.3.8.2. OpenMMS

Object classes represent the first stage in abstracting related
data components. By building structured software modules that
can manage the small-scale interactions between data components,
the programmer can write more succinct code to handle the inter-
actions between much higher-level data constructs. An API then
permits third parties to handle the larger-scale objects without any
need to know the internal workings of the class library. The next
logical step is to present a standard set of ‘objects’ representing
complete logical entities to any programmer for ‘plug-and-play’
incorporation into new applications.

522

International Tables for Crystallography (2006). Vol. G, Section 5.3.8, pp. 522–525.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch5o3v0001/sec5o3o8/

5.3. SYNTACTIC UTILITIES FOR CIF

The Life Sciences Research domain task force of the Object
Management Group (OMG, 2001) is concerned with the devel-
opment of standards for data exchange in biomolecular sciences,
and in 2002 approved a macromolecular structure Corba speci-
fication. Corba (the common object request broker architecture)
is a middleware architecture intended to serve just this pur-
pose of providing access to standard objects representing discrete
logical entities suitable for programmatic manipulation. Corba
promotes interoperability across networked applications by sep-
arating entirely the API from the implementation of the under-
lying data objects. For applications such as the macromolecular
structures database hosted by the Protein Data Bank, the attraction
of networked interoperability is that information can be accessed
through distributed and federated databases, and can be delivered
on demand to any compatible software.

A Corba application comprises an interface definition language
(IDL) and an API that together define access to a data structure that
encapsulates the abstract representation of the objects and relation-
ships relevant to a particular area of knowledge. In general terms,
this data structure may be described as an ‘ontology’ (Westbrook
& Bourne, 2000). The ontology adopted for macromolecular struc-
ture (MMS) data was based on the mmCIF dictionary following a
submission by the Research Collaboratory for Structural Bioinfor-
matics to a Request for Proposal (Greer, 2000).

5.3.8.2.1. The OpenMMS toolkit

In practice, the ontology was developed in a ‘metamodel’ that
combined the definitions and relationships between data items
specified in the mmCIF dictionary with a generic metamodel
framework. The metamodel extracts the information in the mmCIF
dictionary but maintains it in a representation that is independent
of the mmCIF STAR or any other file format. The standard build-
ing block of the metamodel is an Entry object, modelling a single
macromolecular structure.

From a suitable metamodel, it then becomes relatively straight-
forward to generate alternative expressions of the information to
suit different access requirements. The OpenMMS toolkit (Greer
et al., 2002) was built using Java source code to generate a Corba
interface, an SQL schema for relational database loading and an
XML representation of macromolecular data sets (Fig. 5.3.8.1).

The toolkit contains an mmCIF parsing module capable of direct
access to the underlying data archive of mmCIF data files. This is
important, because the data files represent a common reference
for all the derived representations. Any errors or discrepancies
between the expressed forms of the Corba, XML or SQL represen-
tations are resolved against the standard mmCIF reference form.

The relational database supporting an SQL-92 compatible inter-
face provides an appropriate API for many applications, particu-
larly ones that require extensive string searches. The close rela-
tionship between the mmCIF data model and relational database
models has already been described earlier in this volume (Chapter
2.6).

Advantages of the SQL interface are that it provides rapid access
direct to the binary data storage representation and that individual
components of a data set may be efficiently retrieved without the
need to search sequentially through an entire entry.

This efficiency of access and the ability to retrieve individual
MMS data elements from a remote server is best realized through
the Corba interface, the primary purpose of which is indeed to
facilitate such high-performance access.

The bulk exchange of data is addressed through the gener-
ation of XML files. XML is a simple, powerful and widely
used standard for interchanging data, and its use for transporting

Fig. 5.3.8.1. The OpenMMS metamodel and data flow.

macromolecular data obviates the need for target applications to
build their own STAR parsers. However, the use of markup tags
around every individual data element does make the files much
larger than their mmCIF progenitors. This is not an insurmount-
able problem in large-scale application environments, but it can
undermine the effectiveness of XML as a representation mecha-
nism in such applications as web browsers. A possible approach
to this could be to define different, less verbose, XML representa-
tions and populate these on demand from a database store, either
by SQL or XML queries. This is not an approach that the current
OpenMMS toolkit supports directly.

Fig. 5.3.8.2 is an extract from an XML data file generated
from the PDB structure 1xy2. The XML uses a reserved name
space PDBx conforming to the schema http://deposit.pdb.org/
pdbML/pdbx-v0.905.xsd. Data tags map cleanly to the corre-
sponding data names in the mmCIF dictionary formed by concate-
nating the XML element name with its parent category name. For
example, the entry <PDBx:length_a>27.080</PDBx:length_a>

included in the <PDBx:cellCategory> container tag can
be directly translated to the corresponding mmCIF data
item _cell.length_a 27.080. CIF data loops are repre-
sented by repeated instances of the XML tag representing
the corresponding CIF data name (for example, the multi-
ple <PDBx:audit_author name> tags are equivalent to a CIF
loop_ _audit_author.name construct). Nonstandard items
with a pdbx prefix (e.g. <PDBx:pdbx_description> in the
<PDBx:entityCategory> group) refer to private data names in
the PDB extension dictionary (Appendix 3.6.2).

5.3.8.3. mmLib: a Python toolkit for bioinformatics applica-
tions

While the libraries developed for use within the Protein Data
Bank provide powerful functionality, their very size and complex-
ity make them inappropriate for some applications. Indeed, con-
siderable effort may be needed to compile the C++ code on non-
standard platforms. The mmLib toolkit (Painter & Merritt, 2004)

523

5. APPLICATIONS

<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="1XY2"
xmlns:PDBx="http://deposit.pdb.org/pdbML/pdbx-v0.905.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=

"http://deposit.pdb.org/pdbML/pdbx-v0.905.xsd
pdbx-v0.905.xsd">

<PDBx:audit_authorCategory>
<PDBx:audit_author name="Cooper, S."></PDBx:audit_author>
<PDBx:audit_author name="Blundell, T.L.">

</PDBx:audit_author>
<PDBx:audit_author name="Pitts, J.E."></PDBx:audit_author>
<PDBx:audit_author name="Wood, S.P."></PDBx:audit_author>
<PDBx:audit_author name="Tickle, I.J."></PDBx:audit_author>

</PDBx:audit_authorCategory>
<PDBx:cellCategory>
<PDBx:cell entry_id="1XY2">
<PDBx:length_a>27.080</PDBx:length_a>
<PDBx:length_b>9.060</PDBx:length_b>
<PDBx:length_c>22.980</PDBx:length_c>
<PDBx:angle_alpha>90.00</PDBx:angle_alpha>
<PDBx:angle_beta>102.06</PDBx:angle_beta>
<PDBx:angle_gamma>90.00</PDBx:angle_gamma>
<PDBx:Z_PDB>4</PDBx:Z_PDB>

</PDBx:cell>
</PDBx:cellCategory>
<PDBx:citationCategory>
<PDBx:citation id="primary">
<PDBx:title>Crystal structure analysis of

deamino-oxytocin: conformational flexibility
and receptor binding.</PDBx:title>

<PDBx:journal_abbrev>Science</PDBx:journal_abbrev>
<PDBx:journal_volume>232</PDBx:journal_volume>
<PDBx:page_first>633</PDBx:page_first>
<PDBx:page_last>636</PDBx:page_last>
<PDBx:year>1986</PDBx:year>
<PDBx:journal_id_ASTM>SCIEAS</PDBx:journal_id_ASTM>
<PDBx:country>US</PDBx:country>
<PDBx:journal_id_ISSN>0036-8075</PDBx:journal_id_ISSN>
<PDBx:journal_id_CSD>0038</PDBx:journal_id_CSD>

</PDBx:citation>
</PDBx:citationCategory>
<PDBx:computingCategory>
<PDBx:computing entry_id="1XY2">
<PDBx:structure_solution>SHELX</PDBx:structure_solution>
<PDBx:structure_refinement>SHELX-76

</PDBx:structure_refinement>
</PDBx:computing>

</PDBx:computingCategory>
<PDBx:database_2Category>
<PDBx:database_2 database_id="PDB" database_code="1XY2">

</PDBx:database_2>
</PDBx:database_2Category>
<PDBx:entityCategory>
<PDBx:entity id="1">
<PDBx:type>polymer</PDBx:type>
<PDBx:src_method>man</PDBx:src_method>
<PDBx:pdbx_description>OXYTOCIN</PDBx:pdbx_description>
<PDBx:formula_weight>978.189</PDBx:formula_weight>
<PDBx:pdbx_number_of_molecules>1

</PDBx:pdbx_number_of_molecules>
</PDBx:entity>
<PDBx:entity id="2">
<PDBx:type>water</PDBx:type>
<PDBx:src_method>nat</PDBx:src_method>
<PDBx:pdbx_description>water</PDBx:pdbx_description>
<PDBx:formula_weight>18.015</PDBx:formula_weight>
<PDBx:pdbx_number_of_molecules>7

</PDBx:pdbx_number_of_molecules>
</PDBx:entity>

</PDBx:entityCategory>

Fig. 5.3.8.2. Sample XML output from the OpenMMS XML generator. Lines have
been omitted or wrapped to fit the present column width.

addresses this by supplying a library of object-oriented routines
implemented in Python (van Rossum, 1991) that are designed to
integrate with existing or new applications in an easy way.

The objective of mmLib is to build a support platform to han-
dle the increasingly rich data about macromolecular structure

Table 5.3.8.1. The modules provided by the mmLib toolkit

mmLib.mmCIF mmCIF parser
mmLib.PDB PDB format parser
mmLib.Library Base chemical library
mmLib.Extensions.CCP4Library Data retrieval from CCP4 monomer library
mmLib.Elements Chemical data for elements
mmLib.AminoAcids Chemical data for amino acids
mmLib.NucleicAcids Chemical data for nucleic acids
mmLib.Structure Macromolecular structure model
mmLib.GLViewer OpenGL visualizer

import mmLib
from mmLib.FileLoader import LoadStructure, SaveStructure

struct = LoadStructure(
fil = cif,
format = "PDB",
build_properties = ("no_bonds",))

SaveStructure(
fil = pdb,
structure = struct,
format = "CIF")

Fig. 5.3.8.3. A snippet of code illustrating mmCIF/PDB file format conversion with
the mmLib toolkit.

available to structural biologists. Not only do applications need
to be able to handle atomic positions and build appropriate three-
dimensional structure representations; but links to and integra-
tion with information on sequence, homologous structures, and
biochemical, genetic and medical form and function are also
demanded from individual program systems. Since much of these
data are available from external databases in a variety of formats,
mmLib will not be restricted to the handling of files in a single for-
mat. Its initial release provides support for mmCIF, for the PDB
format files that historically have been used for representation of
macromolecular structures (Westbrook & Fitzgerald, 2003) and for
the MTZ format used by the CCP4 program suite (Collaborative
Computational Project, Number 4, 1994).

Table 5.3.8.1 lists the main modules in the current release.
mmLib.mmCIF and mmLib.PDB are read/write parsers for mmCIF
and PDB format files, respectively, which handle file input and
output in these formats, and provide support for inspection or
modification of such file formats. They are typically used in con-
junction with the mmLib.FileLoader component to populate the
mmLib.Structure internal representation of the macromolecular
structure. The high-level abstraction of such functionality allows
for very succinct programmatic constructs. Fig. 5.3.8.3 illustrates
this with a program snippet that (apart from the necessary system
calls for file management) achieves the conversion of an mmCIF
input file to a PDB format representation. This is sufficiently
robust and lightweight to act as an input filter to software already
designed for handling PDB format files.

mmLib.Structure represents the internal representation of a
molecular structure and is implemented as an object hierarchy
with four basic object classes: Structure, Chain, Fragment and
Atom. The Fragment class has subclasses AminoAcidResidue and
NucleicAcidResidue. In order to build a complete representation of
a structure, the toolkit may need to load data from an input mmCIF
or PDB format file, and also from standard data sets of proper-
ties of individual monomers and chemical elements; these standard
libraries of chemical properties are provided by the mmLib.Library
module. The core mmLib source includes a limited library
of such chemical properties (accessible through the subclasses
mmLib.Elements, mmLib.AminoAcids and mmLib.NucleicAcids)

524

5.3. SYNTACTIC UTILITIES FOR CIF

and also provides support for the extensive CCP4 monomer library
through the mmLib.Extensions.CCP4Library. The naming of this
class expresses the intention that other standard data sources
should be made accessible in the same way.

The CCP4 monomer library is in fact included with the soft-
ware as a directory tree of small files in mmCIF format, which
are loaded into the Structure object through the normal use of the
toolkit’s mmCIF parser.

mmLib.GLViewer is a module provided to support visualization
programs using the OpenGL graphics environment. Although it
does not by itself provide a stand-alone viewer, it can be incor-
porated into many common graphics application building environ-
ments. An example molecular viewer, mmView, is provided with
the distribution as an example of an application using the GTK
graphical user interface, a popular toolkit in Linux.

5.3.9. Concluding remarks

CIF is a domain-specific format that cannot attract the num-
ber of programmers that generic formats such as XML do.
In spite of this, there is an impressive collection of pro-
grams available to support activities at many levels, from the
single-line shell script needed to search for some desired con-
tent in a collection of CIFs, to the industrial-scale activities
of major databases and publishing houses. As many exam-
ples as possible of the programs discussed in this chapter
have been collected on the IUCr web site (http://www.iucr.org/
iucr-top/cif/software). It is hoped that the contributions described
here will inspire future generations of programmers to contribute
to a growing and increasingly robust software collection to make
the use of CIFs ever easier and more fruitful.

I am immensely grateful for the assistance, cooperation and
involvement of the community of software authors who have con-
tributed to this chapter in one way or another, and to all the
programmers and developers who have been active through the
cif-developers discussion list of the IUCr (http://www.iucr.org/
iucr-top/lists/cif-developers) and in private discussions.

References
Allen, F. H. (2002). The Cambridge Structural Database: a quarter of a

million crystal structures and rising. Acta Cryst. B58, 380–388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004).

CIF applications. XV. enCIFer: a program for viewing, editing and
visualizing CIFs. J. Appl. Cryst. 37, 335–338.

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E.,
Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P.,
Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N.,
Weissig, H., Westbrook, J. D. & Zardecki, C. (2002). The Protein Data
Bank. Acta Cryst. D58, 899–907.

Berman, H. M., Olson, W. K., Beveridge, D. L., Westbrook, J., Gelbin,
A., Demeny, T., Hsieh, S.-H., Srinivasan, A. R. & Schneider, B. (1992).
The Nucleic Acid Database: a comprehensive relational database of
three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759.

Bernstein, H. J. (1998). cif 2cif. CIF copy program. http://www.iucr.org/
iucr-top/cif/software/ciftbx/cif 2cif.src/.

Bernstein, H. J. & Hall, S. R. (1998). CIF applications. VII. CYCLOPS2:
extending the validation of CIF data names. J. Appl. Cryst. 31, 278–
281.

Bluhm, W. (2000). STAR (CIF) parser. http://pdb.sdsc.edu/STAR/
index.html.

Brown, I. D., Zabobonin, A. & Holt, B. (2004). beCIF. Browser and editor
for CIF. Private communication.

Collaborative Computational Project, Number 4 (1994). The CCP4 suite:
programs for protein crystallography. Acta Cryst. D50, 760–763.

Edgington, P. R. (1997). HICCuP: High-Integrity CIF Checking using
Python. Cambridge: Cambridge Crystallographic Data Centre.

Greer, D. S. (2000). Macromolecular structure RFP response.
Revised submission. http://openmms.sdsc.edu/OpenMMS-1.5.1 Std/
openmms/docs/specs/lifesci 00-11-01.pdf.

Greer, D. S., Westbrook, J. D. & Bourne, P. E. (2002). An ontology driven
architecture for derived representations of macromolecular structure.
Bioinformatics, 18, 1280–1281.

Hall, S. R. (1993). CIF applications. III. CYCLOPS: for validating CIF
data names. J. Appl. Cryst. 26, 480–481.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). The Crystallographic
Information File (CIF): a new standard archive file for crystallogra-
phy. Acta Cryst. A47, 655–685.

Hall, S. R. & Bernstein, H. J. (1996). CIF applications. V. CIFtbx2:
extended tool box for manipulating CIFs. J. Appl. Cryst. 29, 598–603.

Hall, S. R. & Sievers, R. (1993). CIF applications. I. QUASAR: for
extracting data from a CIF. J. Appl. Cryst. 26, 469–473.

Hester, J. R. (2006). A validating CIF parser: PyCIFRW. J. Appl. Cryst.
39, 621–625.

Hester, J. R. & Okamura, F. P. (1998). CIF applications. X. Automatic
construction of CIF input functions: CifSieve. J. Appl. Cryst. 31, 965–
968.

Knuth, D. E. (1986). The TEXbook. Computers and Typesetting, Vol. A.
Reading, MA: Addison-Wesley.

McMahon, B. (1993). ciftex: translation utility from CIF to TEX.
ftp://ftp.iucr.org/pub/ciftex.tar.Z.

McMahon, B. (1998). vcif: a utility to validate the syntax
of a Crystallographic Information File. http://www.iucr.org/
iucr-top/cif/software/vcif/index.html.

OMG (2001). Life Sciences Research Domain Task Force.
http://www.omg.org/lsr/.

Ousterhout, J. K. (1994). Tcl and the Tk toolkit. Reading, MA: Addison-
Wesley.

Painter, J. & Merritt, E. A. (2004). mmLib Python toolkit for manipulat-
ing annotated structural models of biological macromolecules. J. Appl.
Cryst. 37, 174–178.

Patel, A. J. (2002). Yapps: Yet Another Python Parser System.
http://theory.stanford.edu/∼amitp/yapps/.

Rossum, G. van (1991). Python programming language. http://
www.python.org.

Spadaccini, N. & Hall, S. R. (1994). Star Base: accessing STAR File data.
J. Chem. Inf. Comput. Sci. 34, 509–516.

Stampf, D. R. (1994). ZINC: galvanizing CIF to work with UNIX.
Brookhaven: Protein Data Bank.

Toby, B. H. (2003). CIF applications. XIII. CIFEDIT, a program for view-
ing and editing CIFs. J. Appl. Cryst. 36, 1288–1289.

Tosic, O. & Westbrook, J. D. (2000). CIFParse. A library of access
tools for mmCIF. Reference guide. http://sw-tools.pdb.org/apps/
CIFPARSE-OBJ/cifparse/index.html.

Wall, L., Schwartz, R. L., Christiansen, T. & Orwant, J. (2000). Program-
ming Perl, 3rd ed. Sebastopol, CA, USA: O’Reilly & Associates, Inc.

Westbrook, J. D. & Bourne, P. E. (2000). STAR/mmCIF: an ontology for
macromolecular structure. Bioinformatics, 16, 159–168.

Westbrook, J. & Fitzgerald, P. (2003). The PDB format, mmCIF for-
mats and other data formats. Structural bioinformatics, edited by P. E.
Bourne & H. Weissig, pp. 161–179. Hoboken, NJ: John Wiley & Sons,
Inc.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). CIF applica-
tions. VI. CIFLIB: an application program interface to CIF dictionaries
and data files. J. Appl. Cryst. 30, 79–83.

Westrip, S. P. (2004). printCIF for Word. http://www.iucr.org/
iucr-top/cif/software/printCIFforWord/index.html.

Winn, M. (1998). cif.el: an Emacs mode for CIF. Daresbury Laboratory,
Warrington, England.

525 references

http://it.iucr.org/Ga/ch5o3v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

