International Tables for Crystallography (2006). Vol. G, Chapter 5.4, pp. 526-538.

5.4. CIFtbx: Fortran tools for manipulating CIFs

BY H.J. BERNSTEIN AND S. R. HALL

5.4.1. Introduction

CIFtbx is a function library for programmers developing CIF
applications. It is written in Fortran and is intended for use with
Fortran programs. The first version was released in 1993 (Hall,
1993b) and was extended (Hall & Bernstein, 1996) to accommo-
date subsequent CIF applications and DDL changes. The CIFtbx
library is for novice and expert programmers of CIF applications.
It has been used to develop CIF manipulation programs such as
CYCLOPS (Bernstein & Hall, 1998), CIFIO (Hall, 1993a), cif 2cif
(Bernstein, 1997), pdb2cif (Bernstein et al., 1998) and cif 2pdb
(Bernstein & Bernstein, 1996). Programmers writing in C, C++
and mixed Fortran—C should consider alternative approaches, as
discussed in Chapter 5.1 or in the work on CCP4 (Keller, 1996).

The description of library functions below assumes familiarity
with the STAR, CIF and DDL syntax described in Part 2. A com-
plete Primer and reference manual for CIFtbx is provided on the
CD-ROM accompanying this volume.

Fortran is a very general and powerful language, and many com-
pilers allow programming in a wide variety of styles. However,
there is a traditional Fortran programming style that ensures porta-
bility to a wide variety of platforms. CIFtbx conforms to this style
and has been ported to many platforms. The internals of CIFtbx
and the style chosen are discussed at the end of this chapter and in
more detail in the Primer.

5.4.2. An overview of the library

The CIFtbx library is made up of functions, subroutines and vari-
ables that can be added to application programs as ‘commands’
to read and write CIF data. They may also be used to automati-
cally validate incoming and outgoing CIF data. The self-checking
aspects of some functions ensure that data are syntactically cor-
rect and, when used with DDL dictionaries, that individual items
conform to their formal definitions.

The CIFtbx commands are invoked in user software as standard
Fortran function or subroutine calls. For example, to open the dic-
tionary file ‘core.dic’ one uses the logical function dict_ as fol-
lows.

FN = dict_ (’core.dic’,’valid’)

The argument ' core.dic’ is the local file identifier for the relevant
dictionary. The argument ‘valid’ signals that checking should
be done against the data definitions in this dictionary. The local
logical variable Fx is returned as .true. if dict_ opens the file
core.dic correctly; otherwise the function is returned as . false..

Some CIFtbx commands are issued as subroutine calls. For
example, to clear the internal data tables the programmer inserts
the command

call purge_

Affiliations: HERBERT J. BERNSTEIN, Department of Mathematics and Computer
Science, Kramer Science Center, Dowling College, Idle Hour Blvd, Oakdale, NY
11769, USA; SYDNEY R. HALL, School of Biomedical and Chemical Sciences,
University of Western Australia, Crawley, Perth, WA 6009, Australia.

Copyright © 2006 International Union of Crystallography

526

The arguments in CIFtbx commands have been kept to a min-
imum. Most of the parameter setting is handled automatically by
reading and setting variables held in common blocks supplied as
the file ciftbx.cmn. The type declarations for all the commands
are also provided in the file ciftbx.cmn, and the programmer must
‘include’ this file in each application program, function or sub-
routine invoking CIFtbx commands.

The flexibility of the CIF syntax can present some challenges
to an author of applications reading or writing CIF data. This is
because the information in a CIF may be in any order, have data
names as either upper or lower case, and have an arbitrary spacing
between data items. For example, one may extract the cell param-
eters from the front of a CIF and place them at the end, change
all the data names from lower case to upper case, and introduce
a blank line between each data name and its value, and yet the
data (value) content of the output CIF will be identical to that
input. CIFtbx provides the application writer with the tools to han-
dle such presentation details seamlessly without altering the basic
information content.

Most importantly, CIFtbx allows applications to be ‘object-
oriented’, in that data items are simply requested by name with-
out prior knowledge of the file structure. It also allows for more
advanced data processing in which data items are parsed sequen-
tially, and typed and validated via the dictionary. This enables
items to be read independently of the names, and the data typing is
automatically determined and returned. In this way, where needed,
applications can go beyond the position-independent context of a
CIF.

The main purpose of CIFtbx is to manipulate CIF data. How-
ever, there is much in common between CIF and the Extensible
Markup Language XML (Bray et al., 1998), and facilities have
been added to CIFtbx to facilitate writing output in XML as well
as CIF format.

CIFtbx provides four basic kinds of facilities for programmers:

(i) commands to initialize later handling;

(i1) commands to read CIF data;

(iii) commands to write CIF data;

(iv) variables for monitor and control signals.

These commands are described in detail below.

5.4.3. Initialization commands

Initialization commands are applied at the start of a program to
set global conditions for processing CIF data. There are only two
commands of this type.

logical function init_
(devcif, devout, devdir, deverr)
integer devcif, devout, devdir, deverr
logical function dict_ (fname, checks)
character fname* (*), checks* (*)

init_is an optional command that specifies the device number
assignments for the input CIF devcif, the output CIF devout, an
internal scratch file devdir and the file containing error messages
deverr. The internal scratch file devdir is used to hold a copy of

http://it.iucr.org/Ga/ch5o4v0001/

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

the input CIF as a direct-access file (i.e. for random access to parts
of the CIF). init_ is a logical function that is always returned with
a value of .true.. The default device numbers for these files are
1,2,3 and 6.

dict_is an optional command for opening a dictionary fname
and initiating various optional data checks, checks. The choices
of checks to perform are given by a string of blank-separated five-
character ‘check codes’, such as valid or dtype, which turn on
checking for the validity of tags or types of values, respectively.
dict_ is a logical function which is returned as .true. if the
named dictionary was opened and if the check codes are recog-
nizable.

5.4.4. Read commands

These commands are used to read data from an existing CIF. Since
CIF data are order-independent, most applications would work
from a known list of data names (tags) and extract the desired val-
ues from the CIF in the order specified. However, some applica-
tions need to browse a CIF in the order of presentation. In CIFtbx,
a blank name has the meaning of the next name in the file.

logical function ocif (£fname)
character fname* (*)

logical function data_ (name)
character name* (*)

logical function bkmrk (mark)
integer mark

logical function find (name, type, strg)
character name* (*), type*(*), strg*(*)
logical function test_ (name)
character name* (*)
logical function name_ (name)
character name* (*)
logical function numb_ (name, numb, sdev)
character name* (*)
real numb, sdev
logical function numd (name, numb, sdev)

character name* (*)

double precision numb, sdev
logical function char (name,

character name* (*), strg* (*)
logical function cmnt_ (strg)

character strg* (*)
subroutine purge

strg)

ocif requests the named CIF fname to be opened. The logical
function is returned as .true. if the CIF can be opened.

data_ specifies the data block name containing the data to be
read from the CIF. The logical function is returned as .true. if
the data block is found.

bkmrk_ is a bookmark function that saves or restores the current
position in the CIF so that data can be accessed nonsequentially if
need be. The logical function is returned as . true. if there is space
to store the current position or if the restored bookmark number is
valid.

find_ finds the requested item in the current data block. The
logical function is returned as .true. if the item is found.

test_ provides the data attributes of a data item in the current
data block. The logical function is returned as . true. if the item is
found. The data attributes are returned in the common-block vari-
ables 1ist_, type , dictype , diccat_and dicname .

name_ identifies the next data name in the current data block.
The logical function is returned as .true. if another data name
exists in the data block and . false. if the end of the data block is
reached. The name is returned in the function argument, name.

numb_ returns the number numb and its standard uncertainty sdev
(if appended) of a named data item name. The logical function is
returned as .true. if the item is present and is a number. If the

527

item is either absent or cannot be recognized as a valid number,
the function is returned as . false. and the original numeric argu-
ment values are not changed.

numd_ returns the number numb and its standard uncertainty sdev
(if appended) as double-precision variables of a named data item
name. The logical function is returned as .true. if the item is
present and is a number. If the item is either absent or cannot be
recognized as a valid number, the function is returned as .false.
and the original numeric argument values are not changed.

char returns character or text strings, strg, of the named data
item name. The logical function is returned as .true. if the item is
present. If text lines are being read, this function is called repeat-
edly until the logical variable text_is .false..

cmnt_ returns the next comment, strg, in the current data block.
The logical function is returned as . true. if a comment is present.
The initial comment character ‘#’ is not included in the returned
string and a completely blank line is treated as a comment.

purge_ closes all attached data files and clears all tables and
pointers. This is a subroutine call.

5.4.5. Write commands

The following commands are available for writing data to a new
CIE.

logical function pfile (fname)
character fname* (*)

logical function pdata (name)
character name* (*)

logical function ploop_ (name)
character name* (*)

logical function pnumb_ (name, numb, sdev)
character name* (*)
real numb, sdev

logical function pnumd_(name, numb, sdev)
character name* (*)
double precision numb, sdev

logical function pchar (name, string)
character name* (*), string* (*)

logical function pcmnt_ (string)
character string* (*)

logical function ptext (name, string)

character name* (*), string* (*)
logical function prefx (strg, lstrg)
character strg* (*)
integer lstrg
subroutine close_

pfile_ creates a new file with the specified file name fname.
The logical function is returned as .true. if the file is opened.
The value will be . false. if the file already exists.

pdata_ puts the string data_name from the argument name into
the output CIF. The logical function is returned as .true. if the
block is created. The value will be .false. if the block name
already exists. This command inserts the string save_name instead
of the data-block name if the variable saveo_is set to .true.. If
the prior block was a save frame, the necessary terminal save_ is
written for that block before the new block is started.

ploop_ puts the specified data name name into the output CIF.
On the first invocation of this command for a given loop, a loop
string is placed before the data name. The logical function is
returned as . true. if the name passes any requested dictionary val-
idation checks. Once a series of data names for a 1oop_ header has
been declared by calls to this function, all calls to pchar , ptext ,
pnumb_ or pnumd_ for the associated data values must be made with
blank data names or the loop will be terminated. (At the very
least, the first character of these data names must be blank.)

pchar_ puts the specified data name name and character string
string into the output CIF. If the data name is blank, only the

5. APPLICATIONS

character string is put. The logical function is returned as .true.
if the data name passes any requested dictionary validation checks.

pnumb_ puts the specified data name name, single-precision num-
ber numb and an appended standard uncertainty sdev into the out-
put CIF. The logical function is returned as . true. if the data name
passes any requested dictionary validation checks.

pnumd_ puts the specified data name name, double-precision
number numb and an appended standard uncertainty sdev into the
output CIF. The logical function is returned as .true. if the data
name passes any requested dictionary validation checks.

ptext_ puts the specified data name name and text string string
into the output CIF. The data name will only be inserted on the
first invocation of a sequence. The logical function is returned as
.true. if the data name passes any requested dictionary validation
checks. This command must be invoked repeatedly until the text is
finished. The terminal semicolon character ‘;’ is placed in the out-
put CIF when the next call to pchar , pnumb_ or pnumd_ is made,
or if a call is made to ptext_ for a different data name.

pcmnt_ puts the specified comment string string into the output
CIF. The logical function is always returned as .true.. The com-
ment character ‘#’ should not be included in the string. A blank
comment is presented as a blank line without the leading ‘#’. The
string char (0) //char (0) can be used to produce an empty com-
ment with the leading ‘#’.

prefx_ prefixes the specified string strg of length 1strgto sub-
sequent lines of the output CIF. The total line length is still limited
to the value given by the variable 1ine (the default is 80 charac-
ters). This function is useful when embedding a CIF into another
text document, such as a PDB REMARK. The logical function is
always returned as .true..

close_ closes the output CIF only. This command must be used
if pfile 1is used. This a subroutine call.

5.4.6. Variables

The CIFtbx library also contains a large number of variables
declared in the common blocks in the file ciftbx.cmn that provide
signals to the programmer on various aspects of the data reading
and writing processes. These variables are described below in four
broad categories, as shown in Table 5.4.6.1: general monitor vari-
ables, general control variables, input monitor variables and output
control variables.

Note that for all but special applications only the basic variables
list , loop_, strg , text and type_ are usually used. These
variables supplement the argument lists of the various commands,
providing essential status information.

5.4.6.1. General monitor variables

These variables are returned by CIFtbx and provide information
about the general status of processing.

file_: character string containing the file name of the current
input file.

longf : integer variable containing the length of the file name
in file.

precn : integer variable containing the line number (starting
from 1) of the last line written to the output CIF.

recn_: integer variable containing the line number (starting
from 1) of the last line read from the input CIF.

tbxver : character*32 variable that is the CIFtbx version and
date in the form 'CIFtbx version N.N.N DD MMM YvYY' (some
older versions of CIFtbx use a two-digit year and have a comma
after the version number).

528

Table 5.4.6.1. CIFtbx variables

General monitor General control Input monitor Output control

alias_ aliaso_
align_
append
bloc_
decp_ pdecp_
diccat_
dicname
dictype
dicver
esdlim_
file
glob_ globo_
line
list_
long_
longf_
loop_
lzero_ plzero_
nblank nblanko
posdec_ pposdec_
posend_ pposend
posnam_ pposnam_
posval pposval
precn_
quote pguote
recbeg
recend_
recn_
save_ saveo_
strg
tabl
tabx ptabx_
tagname_
tbxver
text
type_
xmlout
xmlong

5.4.6.2. General control variables

These variables control CIFtbx commands. The user may accept
the default values or may store new values into these variables to
change the behaviour of the commands.

alias_: logical variable to control the use of data-name aliases
for input items. If set to .true., aliases from the input dictionary
may be used (see Section 5.4.7). The default is .true..

append_: logical variable to control reuse of the direct-access
file. If set to . true., it will cause each call to ocif to append the
information found to the current CIF. The defaultis .false..

line_: integer variable to set the input/output line limit for
processing a CIF. The default value is 80 characters. This limit
counts the visible printable characters of the line, not the system-
dependent line terminators.

nblank_: logical variable to control the treatment of input blank
strings. If set to .true., char or test_, it will return the type as
‘null’ rather than ‘char’ when encountering a quoted blank.

recbeg_: integer variable to give the record number of the first
record to be used. May be changed by the user to restrict access to
a CIF.

recend_: integer variable to give the record number of the last
record to be used. May be changed by the user to restrict access to
a CIF.

tabx : logical variable is set to .true. for tab stops to be
expanded to blanks during the reading of a CIF. The default is

.true..

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

5.4.6.3. Input monitor variables

These variables are returned by CIFtbx tools and are used to
decide on subsequent actions in the program. The lengths of the
character strings that hold data names and block names are con-
trolled by the parameter NUMCHAR in the common-block declara-
tions.

bloc_:
name.

decp_: logical variable is .true. if a decimal point is present in
the input numeric value.

diccat_: character string containing the category name speci-
fied in the attached dictionaries.

dicname : character string containing the root alias data name
(see Section 5.4.7) specified in the attached dictionaries or, after a
call to dict_, the name of the dictionary.

dictype : character string containing the data-type code speci-
fied in the attached dictionaries. These types may be more specific
(e.g. ‘float’ or ‘int’) than the types given by the variable type (e.g.
‘numb’).

dicver : character string containing the version of a dictionary
after a call to dict_.

glob_: logical variable is .true. if the current data block is a
global block. The application is responsible for managing the rela-
tionship of global data to other data blocks.

list_: integer variable containing the sequence number of the
current looped list. This value may be used by the application to
identify variables that are in different lists or that are not in a list
(a zero value).

long : integer variable containing the length of the data string
in strg_.

loop_: logical variable is .true. if another loop packet is
present in the current looped list.

1zero_: logical variable is .true. if the input numeric value is
of the form [sign]0.nnnn rather than [sign].nnnn.

posdec_: integer variable containing the column number (posi-
tion along the line, counting from 1 at the left) of the decimal point
for the last number read.

posend_: integer variable containing the column number (posi-
tion along the line, counting from 1 at the left) of the last character
for the last string or number read.

posnam_: integer variable containing the starting column (posi-
tion along the line, counting from 1 at the left) of the last name or
comment read.

posval_: integer variable containing the starting column (posi-
tion along the line, counting from 1 at the left) of the last data value
read.

quote_: character variable giving the quotation symbol found
delimiting the last string read.

save_: logical variable is .true. if the current data block is a
save frame, otherwise .false..

strg_: character variable containing the data name or string
representing the data value last retrieved.

tagname : character variable containing the data name of the
current data item as it was found in the CIF. May differ from
dicname because of aliasing.

text : logical variable is .true. if another text line is present
in the current input text block.

type_: character variable containing the data-type code of the
current input data item. This will be one of the four-character
strings ‘null’ (for missing data, the period or the question mark),
‘numb’ (for numeric data), ‘char’ (for most character data) or ‘text’
(for semicolon-delimited multi-line character data). For most pur-
poses the type ‘text’ is a subtype of the type ‘char’, not a distinct

character string containing the current data-block

529

data type. CIFtbx permits multi-line text fields to be used when-
ever character strings are expected.

5.4.6.4. Output control variables

These variables are specified to control the processing by
CIFtbx commands that write CIFs.

aliaso_: logical variable to control the use of data-name aliases
for output items. If set to .true., preferred synonyms from the
input dictionary may be output (see Section 5.4.7). The default is
.false..

align_:logical variable to control the column alignment of data
values in loop_ lists output to a CIF. The default is . true..

esdlim : integer variable to set the upper limit of appended
standard uncertainty (e.s.d.) integers output by pnumb_. The default
value is 19, which limits standard uncertainties to the range 2—19.

globo : logical variable which if set to .true. will cause the
output data block from pdata to be written as a global block.

nblanko : logical variable controls the treatment of output
blank strings. If set to . true., output quoted blank strings will be
converted to an unquoted period (i.e. to a data item of type null).
Recall that CIFtbx treats an unquoted period or question mark as
being of type null.

pdecp : logical variable controls the treatment of output deci-
mal numbers. If set to . true., a decimal point will be inserted into
numbers output by pnumb_ or pnumbd_. If setto . false., a decimal
point will be output only when needed. The default is . false..

plzero_:logical variable controls the treatment of leading zeros
in output decimal numbers. If set to . true., a zero will be inserted
before a leading decimal point. The default is . false..

pposdec_: integer variable to set the column number (position
along the line, counting from 1 at the left) of the decimal point for
the next number to be output.

pposend_: integer variable to set the position of the ending col-
umn for the next number or character string to be output. Used to
pad with zeros or blanks.

pposnam_: integer variable to set the starting column of the next
name or comment to be output.

pposval_: integer variable to set the position of the starting col-
umn of the next data value to be output.

pquote_: character variable containing the quotation symbol to
be used for the next string written.

saveo_: logical variable is set to .true. for pdata_ to output a
save frame, otherwise a data block is output.

ptabx : logical variable is set to .true. for tab stops to be
expanded to blanks during the creation of a CIF. The default is
.true..

tabl : logical variable is set to .true. for tab stops to be used
in the alignment of output data. The default is .true..

xmlout : logical variable is set to .true. to change the output
style to XML conventions. Note that this is not a CML (Murray-
Rust & Rzepa, 1999) output, but a literal translation from the input
CIF. The default is . false..

xmlong : logical variable is set to .true. to change the style
of XML output if xmlout is .true.. When .true. (the default),
XML tag names are the full CIF tag names with the leading under-
score, , removed. When .false., an attempt is made to strip the
leading category name as well.

5.4.7. Name aliases

CIF dictionaries written in DDL2 permit data names to be aliased
or equivalenced to other data names. This serves two purposes.
First, it allows for the different data-name structures used in DDL1

5. APPLICATIONS

read (8, (a)’,end=400)
f1 test (name)
write(6,’ (2(3x,a32)"’)
name=dicname_
f1 test_ (name)
write(6,’ (2(3x,a32)"’)

name

name, dicname_

name, tagname__

Fig. 5.4.7.1. Example application accessing aliased data names.

and DDL2 dictionaries, and, second, it links equivalent data names
within the DDL2 dictionary. Aliasing also allows the use of syn-
onyms appropriate to the application.

CIF'tbx is capable of handling aliased data names transparently
so that both the input CIF and the application software can use
any of the equivalent aliased names. In addition, an output CIF
may be written with the data names specified in the CIFtbx func-
tions or with names that have been automatically converted to pre-
ferred dictionary names. If more than one dictionary is loaded, the
first aliases have priority. We call the preferred dictionary name the
‘root alias’.

The default behaviour of CIFtbx is to accept all combinations of
aliases and to produce output CIFs with the exact names specified
in the user calls. The interpretation of aliased data names is mod-
ified by setting the logical variables alias and aliaso . When
alias_ is set to .false., the automatic recognition and transla-
tion of aliases stops. When aliaso 1is set to .true., the auto-
matic conversion of user-supplied names to dictionary-preferred
alias names in writing data to output CIFs is enabled. The pre-
ferred alias name is stored in the variable dicname following any
invocation of a getting function, such as numb_ or test_. If alias
is set to .false., dicname Will correspond to the called name.
The variable tagname_ is always set to the actual name used in an
input CIF.

For example, the data name atom site anisotrop.ul1] [1]
in the DDL2 mmCIF dictionary is aliased to the data name
_atom site aniso U 11 in the DDLI core CIF dictionary. In the
example application of Fig. 5.4.7.1, showing the CIFtbx function
test_ run with both the mmCIF and core dictionaries loaded, the
specified data name atom site aniso U 11 is used to inquire as
to the names used in an input CIF.

The execution of this code results in the following printout.

_atom site_aniso U 11
_atom_site_anisotrop.ull] [1]

_atom_site anisotrop.ull] [1]
_atom_site_aniso U 11

5.4.8. Implementation of the tools

Implementation of the CIFtbx tools is straightforward. The sup-
plied source files in all versions are: ciftbx.f, ciftbx.sys (used in
ciftbx.f) and ciftbx.cmn (used in local applications). More recent
versions of CIFtbx (version 2.4 and later) require certain additional
source files: ciftbx.cmf, ciftbx.cmv, hash_funcs.f and clearfp.f (or
clearfp_sun.f).

The common file ciftbx.cmn must be ‘include’d into any local
routines that use CIFtbx tools. The library in ciftbx.f may be
invoked by either (i) compiling and linking the resulting object
file as an object library, or with explicit references in the applica-
tion linking sequence (versions 2.4 and later require hash_funcs.o
as an additional object file); or (ii) including ciftbx.f in the local
application and compiling and linking it with the local program.

Approach (i) is more efficient, but for some applications
approach (ii) may be simpler.

530

5.4.9. How to read CIF data

The CIFtbx approach to reading CIF data is illustrated using a
simple example program CIF_IN (Fig. 5.4.9.1), which reads the
file test.cif (Fig. 5.4.9.2) and tests the input data items against the
dictionary file cif_core.dic. The resulting output is shown in Fig.
5.4.93.

The program CIF_IN may be divided into the following steps,
each tagged with the relevant reference letter in the comment
records of the listing shown in Fig. 5.4.9.1.

A: Define the local variables. The CIFtbx variables are added
with the line include ‘ciftbx.cmn’.

B: Assign device numbers to the files using the command init .
The device number 1 refers to the input CIF, 3 to the scratch file
and 6 (stdout) to the error-message files. The device number 2
refers to an output CIF, if we were to choose to write one.

C: Open a specific dictionary file named cif_core.dic with the
command dict_. The code valid signals that the input data items
are to be validated against the dictionary. In this application, dict
is invoked in an 1F statement that tests whether the command is
successful.

D: Open the CIF test.cif with the command ocif and test that
the file is opened.

E: Invoke the data_command, containing a blank block code, to
‘open’ the next data block. The block name encountered is placed
in the variable bloc_, which in this application is printed.

F: Read the cell-length values and their standard uncertainties
with the numb_ command, and print these out. Test whether all of
the requested data items are found.

G: The char_function is used to read a single character string.

H: The name_ function is used to get the data name of the next
data item encountered.

I: This sequence illustrates how text lines are read. The char
function is used to read each line and the text variable is tested
to see whether another text line exists in this data item.

J: This sequence illustrates how a looped list of items is read.
Individual items are read using char_or numb_ functions and the
existence of another packet of items is tested with the variable
loop._.

The resulting printout is shown in Fig. 5.4.9.3. In this figure,
note the following:

(1) The first six lines of the printout are output by CIFtbx rou-
tines, not by the program CIF_IN. They occur when the data_
command is executed and data items in the block mumbo_jumbo are
read from the CIF and checked against the dictionary file. Note that
this is when the CIFtbx routines store the pointers and attributes of
all items in the data block. All subsequent commands use these
pointers to access the data.

(ii) The ‘####° string in front of cell length a in the input
CIF makes this line a comment and makes it inaccessible to
CIF_IN.

(iii) Data items may be read from a CIF in any order but looped
items must normally be in the same list. If one needs to access
looped items in different lists simultaneously, the bkmrk com-
mand is used to preserve CIFtbx loop pointers.

5.4.10. How to write a CIF

Writing a CIF usually is simpler than reading an existing one.
An example of a CIF-writing program is shown in Fig. 5.4.10.1.
This example is intentionally trivial. The created CIF test.new
is shown in Fig. 5.4.10.2. Note that command dict_ causes all
output items to be checked against the dictionary cif core.dic.
Unknown names are flagged in the output CIF with the comment

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

PROGRAM CIF IN
C
C....A.. Define the data variables
include 'ciftbx.cmn’
logical f1,£f2,£3
character*32 name
character*80 line
real cela,celb,celc,siga,sigb, sigc
real X,¥Y,2Z,u,numb, sdev
data cela,celb,celc,siga,sigb,sigc /6*0.0/
C....B.. Assign the CIFtbx files
f1 = init_(1, 2, 3, 6)
C....C.. Request dictionary validation check
if (dict_(’cif core.dic’,’valid’)) goto 100
write(6,’ (/a/)’) ' Requested Core dictionary not present’
C....D.. Open the CIF to be accessed
100 name='test.cif’
if (ocif (name)) goto 120
write(6,’ (a///)") ’ >>>>>>>>> CIF cannot be opened’
stop
C....E.. Assign the data block to be accessed
120 if (.not.data_(’ ’)) goto 200
write(6,’ (/a,a/)’) ' Access items in data block ', bloc
C....F.. Extract some cell dimensions; test all is OK
fl = numb_(’_cell length a’, cela, siga)
f2 = numb_ (' cell length b’, celb, sigb)
f3 = numb_(’_cell length c’, celc, sigc)
if (.not. (fl.and.f2.and.f3)) write(6,’(a)’) ' Cell lengths missing!’
write(6,’ (a,6£10.4)’) ' Cell ’,cela,celb,celc,siga,sigb,sigc
C....G.. Extract space group notation (expected char string)
f1 = char (’'_symmetry cell setting’, name)
write(6,’ (a,a/)’) ' Cell setting *,name (1:long)
C....H.. Get the next name in the CIF and print it out
fl = name_ (name)
write(6,’ (a,a/)’) ' Next data name in CIF is /' ,name
C....I.. List the audit record (possible text line sequence)
write(6,’ (a)’) ' Audit record’
140 fl1 = char (’_audit_update_record’, line)
write(6,’ (a)’) line
if (text_) goto 140
C....J.. Extract atom site data in a loop
write(6,’ (/a)’) ' Atom sites’
160 f1 = char ('’ _atom _site label’, name)
f2 = numb_(’'_atom site_ fract_x’, x, sx)
f2 = numb_ (' atom site fract y’, y, sy)
f2 = numb_(’'_atom site_ fract_z’, z, sz)
f3 = numb_(’_atom site U iso or equiv’, u, su)
write(6,’ (1x,a4,4£8.4)’) name,X,y,z,u
if (loop_) goto 160
C
goto 120
200 continue
end

Fig. 5.4.9.1. Sample program CIF_IN. See text for explanation.

"#< not in dictionary’. This applies to both looped and single
data items.

A more complex example of writing a CIF is given in the pro-
gram cif 2cif available with the CIFtbx release. A similar program
that reads a CIF and writes an XML file is cif 2xml, also available
with the CIFtbx release.

5.4.11. Error-message glossary

The CIFtbx routines will generate explicit error messages in the
printout or in the created CIF if requested to do so (e.g. during
dictionary checks). If data processing cannot continue (i.e. fatal

531

errors), an appropriate error message is placed in the printout and
execution terminates. However, the default approach is to remain
mute and for error detection to be monitored by the application
program via the CIFtbx functions returning .true. Or .false.
values that tell the application program whether the command
was performed correctly. This places the primary responsibility for
error checking on the application software. The importance of this
approach is that it enables the local application to respond to run-
time problems in a controlled way and to take corrective action
if it is possible. However, some types of processing errors, such
as exceeding the dimensions of critical CIFtbx arrays, do require
appropriate messages to be issued and for execution to cease.

5. APPLICATIONS

data_mumbo_jumbo

_audit_creation_date
_audit_creation method
_audit_update_record
91-04-09
91-04-15

7

7

_dummy_test
_chemical name systematic

_chemical formula moiety

91

from xtal archive file using CIFIO

text and data added by Tony Willis.
rec’d by co-editor with diagram as manuscript HL7

"rubbish to see what dict_says"

trans-3-Benzoyl-2- (tert-butyl)-4- (iso-butyl)-1,3-oxazolidin-5-one
'Cl8 H25 N 03’

-03-20

_chemical_formula_weight 303.40
_chemical melting point ?
####_cell length a 5.959(1)
_cell length b 14.956(1)
_cell length c 19.737(3)
_cell measurement theta min 25
_cell measurement_theta max 31
_symmetry cell setting orthorhombic
loop_
_atom_site label
_atom_site fract x
_atom_site fract y
_atom_site_ fract_z
_atom _site U iso or equiv
_atom_site_thermal displace_type
_atom_site calc_flag

s .20200 .79800 .91667 .030(3) Uij

o .49800 .49800 .66667 .02520 Uiso *?

cl .48800 .09600 .03800 .03170 Uiso *?
loop_ _blatl blat2 1 2 3 456 abcd?7890

Fig. 5.4.9.2. Example CIF read by the sample program CIF_IN shown in Fig. 5.4.9.1.

CIFtbx warning: test.cif data_mumbo_ jumbo line: 8

Data name _dummy test not in dictionary!

CIFtbx warning: test.cif data mumbo_jumbo line: 35

Data name _blatl not in dictionary!

CIFtbx warning: test.cif data mumbo_jumbo line: 35

Data name _blat2 not in dictionary!

Access items in data block mumbo_jumbo

Cell dimension(s) missing!

Cell 0.0000 14.9560 19.7370 0.0000 0.0010 0.0030
Cell setting orthorhombic

Next data name in CIF is _atom_type symbol

Audit record
91-04-09
91-04-15

Atom sites

text and data added by Tony Willis.
rec’d by co-editor with diagram as manuscript HL7

s 0.2020 0.7980 0.9167 0.0300
o 0.4980 0.4980 0.6667 0.0252
cl 0.4880 0.0960 0.0380 0.0317

Fig. 5.4.9.3. Printout from the example program CIF_IN run on the test file of Fig. 5.4.9.2.

CIF'tbx error messages are in four parts: ‘warning’ or ‘error’
header line, the name of the file being processed, the current data
block or save frame, and the line number. Another line contains
the text of the message.

5.4.11.1. Fatal errors: array bounds

The following fatal messages are issued if the CIFtbx array
bounds are exceeded. Operation terminates immediately. Array
bounds can be adjusted by changing the parRaMETER values in

532

ciftbx.sys. If the value of MaxBUF needs to be changed, the file
ciftbx.cmv must also be updated.

Input line value > MAXBUF

Number of categories > NUMBLOCK
Number of data names > NUMBLOCK
Cifdic names > NUMDICT

Dictionary category names > NUMDICT
Items per loop packet > NUMITEM
Number of loop_s > NUMLOOP

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

C.ooon.. Open a new CIF
400 if(pfile ('test new’)) goto 450
write ((//a/) ' Output CIF by this name exists already!’
goto 500
Covvnnn Request dictionary validation check
450 i (dict (’cif core.dic’,’valid’)) goto 460
write ((/a/) ' Requested Core dictionary not present’
C.o...... Insert a data block code
460 f1 = pdata_(’whoops_a_daisy’)
Covvnnn Enter various single data items to show how
fl1 = pchar_ (’_audit creation_method’, ’using CIFtbx’)
f1 = pchar (’_audit creation extra2’, "Terry O’Connell")
fl1 = pchar_ (’_audit_creation_extra3’,’Terry O"Connell’)
f1 = ptext (’_audit creation record’,’ Text data may be ')
f1 = ptext (’_audit_creation_record’,’ entered like this’)
f1 = ptext (’_audit creation_record’,’ or in a loop.’)
f1l = pnumb_ (’ cell measurement temperature’, 293., 0.)
fl = pnumb_(’_cell _volume’, 1759.0, 13.)
f1 = pnumb_(’ cell length b’, 8.75353553524313,0.)
fl = pnumb_(’_cell _length c¢’, 19.737, .003)
C.oooen Enter some looped data
fl1 = ploop_(’_atom type symbol’)
f1 = ploop_ (’_atom_type oxidation number’)
fl = ploop_(’_atom_type number in cell’)
do 470 i=1,3
f1 = pchar (’ ’,alpha(1:1i))
fl = pnumb_(’ ’,float(i),float(i)*0.1)
470 f1 = pnumb_(’ ’,float (i) *8.64523,0.)
C.ooonil. Do it again but as contiguous data with text data
f1 = ploop_ (’_atom site label’)
f1 = ploop_ (’_atom site_occupancy’)
f1 = ploop_(’_some_silly text’)
do 480 i=1,2
f1 = pchar_(’ ’,alpha(1:i))
f1 = pnumb_(’ ’,float(i),float(i)*0.1)
480 fl1 = ptext_(’ ’,’ Hi Ho the diddly oh!’)
500 call close_

Fig. 5.4.10.1. Sample program to create a CIF.

data_whoops_a daisy

_audit creation method ‘using CIFtbx’
_audit_creation extra2 'Terry O’Connell’ #< not in dictionary
_audit_creation extra3 'Terry O"Connell’ #< not in dictionary

_audit_creation_record
;Text data may be
entered like this
or in a loop.

7

_cell measurement_temperature 293
_cell volume 1759 (13)
_cell length b 8.75354
_cell length c 19.737(3)
loop_

_atom_type symbol
_atom_type oxidation number
_atom_type number in cell

a 1.00(10) 8.64523
ab 2.0(2) 17.2905
abc 3.0(3) 25.9357

loop_
_atom_site label
_atom_site occupancy
_some_silly text #< not in dictionary
a 1.00(10)
;Hi Ho the diddly oh!
ab 2.0(2)
;H1 Ho the diddly oh!

7

Fig. 5.4.10.2. Sample CIF created by the example program of Fig. 5.4.10.1.

533

5. APPLICATIONS

However, the message

More than MAXBOOK bookmarks requested

is not ‘fatal’, in the sense that the function bkmrk_ returns . false.
to permit appropriate action before termination. This is effectively
a fatal error for which recompilation with a larger value of MaxBoox
is necessary. However, this is usually the result of a logic error in
the application, and the error has been made non-fatal to allow the
programmer to insert debugging code, if desired. The application
should clean up and exit promptly.

5.4.11.2. Fatal errors: data sequence, syntax and file construc-
tion

Dict_ must precede ocif

Dictionary files must be loaded before an input CIF is opened

because some checking occurs during the CIF loading process.

Illegal tag/value construction

Data name (i.e. a ‘tag’) and data values are not matched (outside
a looped list). This usually means that a data name immediately
follows another data name, or a data value was found without a
preceding data name. The most likely cause of this error is the
failure to provide ‘.’ or ‘2’ for missing or unknown data values or
a failure to declare a 1oop when one was intended.

Item miscount in loop

Within a looped list the total number of data values must be
an exact multiple of the number of data names in the loop
header.

Prior save-frame not terminated

Save-frame terminator found out of context. Save frames must start
with save framecode and end with save . These messages will be
issued if this does not occur.

Syntax construction error
Within a data block or save frame the number of data values
does not match the number of data names (ignoring loop struc-
tures). This message should occur only if there is an internal
logic error in the library. Normally the program will terminate on
Item miscount in loop first.

Unexpected end of data
When processing multi-line text the end of the CIF is encountered
before the terminal semicolon.

5.4.11.3. Fatal errors: invalid arguments

The following messages are generated by calls with invalid
arguments.

Call to find with invalid arguments
Internal error in putnum

5.4.11.4. Warnings: input errors

Category <cat-code> first implicitly defined in cif
The category code in the DDL2 data name is not matched by
an explicit definition in the dictionary. This may be intentional
but usually indicates a typographical error in the CIF or the
dictionary.

Data name <name> not in dictionary!
The data item name <name> was used in the CIF but could not be
found in the dictionary.

Data block header missing
No data_ or global was found when expected.

534

Duplicate data item <name>
Two or more identical data names <name> have been detected in a
data block or save frame.

Exponent overflow in numeric input

Exponent underflow in numeric input

The numeric value being processed has an exponent that cannot be
processed on this machine. If the string involved is not intended as
a number, then surrounding it with quotes may resolve the prob-
lem.

Heterogeneous categories in loop <new cat-codex
vs <old cat-code>

Looped lists should not contain data items belonging to different
categories. This error occurs if the category of a new data item
fails to match the category of a prior data item. A special category
(none) is used to denote item names for which no category has
been declared. Warnings are not issued on this level for a loop for
which all data items have no declared category.

Input line length exceeds line_

Non-blank characters were found beyond the value given by the
variable 1ine . The default value for 1ine is 80 (optionally
increased to 2048 in CIFtbx 2.7 and later for CIF 1.1 compliance).
The extra characters in column positions 1ine + 1 through MaxBUF
will be processed but the input file may need to be reformatted for
use with other CIF-handling programs.

Missing loop items set as DUMMY

A looped list of output items was truncated with an incomplete
loop packet (i.e. the number of items did not match the number of
loop data names). The missing values were set to the character
string ‘DUMMY’.

Numb type violated <namex>

The data item <name> has been processed with an explicit dictio-
nary type numb, but with a non-numeric value. Note that the values
‘2’ or ‘.’ will not generate this message.

Quoted string not closed

Character values may be enclosed by bounding quotes. The strict
definition of a ‘quoted-string’ value is that it must start with a <wg>
digraph and end with a <qw> digraph, where w is a white-space
character blank or tab and g is a single or double quote, and the
same type of quote mark is used in the terminal digraph as was
used in the initial digraph. This message is issued if these condi-
tions are not met.

5.4.11.5. Warnings: output errors

Converted pchar output to text for <string>

An attempt was made to write a string with pchar_instead of
ptext_, but the string contains a combination of characters for
which ptext must be used.

ESD less than precision of machine

Overflow of esd

Underflow of esd

A call to pnumb_ or numb_ was made with values of the number and
standard uncertainty (e.s.d) which cannot be presented properly
on this machine. A bounding value of 0 or 99999 is used for the
e.s.d.

Invalid value of esdlim_ reset to 19
In processing numeric output, a value of esdlim_ less than 9 or
greater than 99999 was found. esdlim_is then set to 19.

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

Missing loop name set as _DUMMY

Missing loop items set as DUMMY

In processing a loop , a dummy string has been inserted for a
missing header or value.

Output CIF line longer than line_

In outputting a line, the data exceed the limit specified in 1ine .
This occurs only if a single data name or a value exceeds this
limit.

Out-of-sequence call to end text block

The termination of a text block has been invoked before a text
block has been started. This can only occur with irregular use of
the CIFtbx routines rather than the standard interface routines.

Output prefix may force line overflow
A prefix string placed in prefx exceeds line less the allowed
length of tags.

Prefix string truncated

A prefix string specified to prefx_ is longer than the maximum
line length allowed. The prefix string is truncated and processing
continues.

5.4.11.6. Warnings: dictionary checks

Aliases and names in different loops; only using

first alias
If a DDL2 dictionary contains a loop of alias declarations, the cor-
responding data-name declarations are expected to be in the same

loop. Only the first alias name is used.

Attempt to redefine category for item

Attempt to redefine type for item

If a DDL2 dictionary contains a category or type for a data item
that conflicts with an earlier declaration, the first is used.

Categories and names in different loops

Types and names in different loops

If a DDL2 dictionary contains a loop of category or type declara-
tions, the corresponding data-name declarations are expected to be
in the same loop. Only the first category name or type is used.

Category id does not match block name

In a DDL2 dictionary, the save-frame code is expected to start
with the category name. If a category name within the frame is
not within a loop, it is checked against that in the frame code and
a warning is issued if these do not match.

Conflicting definition of alias

A DDL2 dictionary contains a new declaration of a data-name alias
which is in conflict with a previous alias definition. The first alias
declaration is used.

Duplicate definition of same alias
A DDL2 dictionary contains a new declaration of an alias for a
data name which duplicates a previously defined alias pair.

Item name <name> does not match category name

If category checking is enabled and the category assigned to an
item name does not match the intial characters of the item name,
this message is issued. This may indicate a typographical error or
a deprecated item in the dictionary.

Item type <type-code> not recognised

The DDL2 dictionary type codes are translated to the DDL type
codes ‘numb’, ‘char’ and ‘text’. If an unrecognized type code is
found no translation occurs.

535

DDL
DDL
DDL

Multiple
Multiple
Multiple
Multiple DDL
Multiple DDL
DDL1 and DDL2 declarations for categories, data names, data
types and related items are used in the same data block or save
frame.

category definitions
name definitions

type definitions

related item definitions

related item functions

Multiple categories for one name

Multiple types for one name

A dictionary contains a loop of category or type definitions and an
unlooped declaration of a single data name. The first category or
type definition is used.

No category defined in block <name> and name <name>
does not match

A DDL2 dictionary contains no category for the defined data item

and it was not possible to derive an implicit category from the

block name. This usually indicates a typographical error in the dic-

tionary.

No category specified for name <name>
A dictionary contains categories and category checking is enabled
but no category is defined for the named data item.

No name defined in block

No name in the block matches the block name

These messages are issued if a dictionary save frame or data block
contains no name definition or if all the names defined fail to match
the block name.

No type specified for name <name>
A type code is missing from a dictionary and type checking was
requested in the dict invocation.

One alias,
A DDL2 dictionary may contain a list of data names and a single
alias outside this loop. In this case, the correct name to which to
link the alias must be derived implicitly. If the save-frame code
matches the first name in the loop no warning is issued, because
the use of the block name was probably the intended result, but if
no such match is found this warning is issued.

looped names, linking to first

5.4.12. Internals and programming style

CIF'tbx is programmed in a highly portable Fortran programming
style. However, on some older systems, some adaptation may be
necessary to allow compilation. Implementors should be aware
of the extensive use of variables in common blocks to transmit
information and control execution (programming by side-effects),
the use of the INCLUDE statement, the use of the ENDDO statement,
the names of routines used internally by the package, the use of
names longer than six characters and the use of names including
the underscore character.

Some aspects of the internal organization of the library to deal
with characteristics of CIFs are worth noting. CIFtbx copies an
input CIF to a direct-access (i.e. random-access) file, but writes an
output CIF directly. All data names are converted to lower case to
deal with the case-insensitive nature of CIF. A hierarchy of parsing
routines is used to deal with processing white space.

The major issues of programming style and internals are sum-
marized here. See the Primer on the CD-ROM for more informa-
tion.

5. APPLICATIONS

5.4.12.1. Programming style

A traditional Fortran style of programming is used in CIFtbx.
Common blocks are declared to report and control the state of
the processing. This allows argument lists to be kept short and
avoids the need to create complex data structure types, but intro-
duces extensive ‘programming by side-effects’. In order to reduce
the impact of this approach on users, two different views of
the common blocks are provided. The declarations in ciftbx.cmn
are needed by all users. The more extensive declarations in
ciftbx.sys, which include the same common declarations as are
found in ciftbx.cmn and additional declarations used internally
within CIFtbx, are provided for use in maintaining the library.
Caution is needed in making internal modifications to the library
to maintain the desired relationships among the actions of vari-
ous routines and the states of variables declared in the common
blocks.

Statements are written in the first 72 columns of a line, reserving
columns one through five for statement labels and using column
six for continuation. Approaches that would require the use of C
libraries or non-portable Fortran extensions are avoided. For this
reason, all the internal service routines are written in Fortran, all
memory needed is preallocated with DIMENSION statements and a
direct-access file is used to hold the working copy of a CIF.

5.4.12.2. Memory management

Since CIFtbx does static memory allocation with DIMENSION
statements, it is sometimes necessary to adjust the array dimen-
sions chosen to suit a particular application. It may also be neces-
sary to increase the storage allocated for individual tags to allow
for unusually long ones.

The sizes of most arrays and strings used in CIFtbx that might
require adjustment are controlled by PARAMETER statements in the
files ciftbx.sys and ciftbx.cmv (the variable-declaration portion of
ciftbx.cmn). The parameters are shown in Table 5.4.12.1.

These values can result in CIFtbx requiring more than a
megabyte of memory. On smaller machines working with a small
dictionary and simple CIFs, considerable space can be saved by
reducing the values of NUMDICT and NUMBLOCK.

On the other hand, an application working with several layered
dictionaries and large and complex CIFs with many data items and
many loops in a data block might require a version of CIFtbx with
larger values of NUMDICT, NUMBLOCK and, perhaps, of NUMLOOP.

The variables NuMpAGE and NumMcpP control the amount of mem-
ory to be used to buffer the direct-access file and the size of the
data transfers to and from that file. Smaller values will reduce the
demand for memory at the expense of slower execution.

5.4.12.3. Use of INCLUDE

The 1ncLUDE statement allows the statements in the specified file
to be treated as if they were being included in a program in place
of the 1ncLUDE statement itself. This simplifies the maintenance
of common-block declarations and is an important tool in keep-
ing code well organized. In CIFtbx, the INCLUDE statement is used
to bring the statements in the files ciftbx.cmn and ciftbx.sys into
programs where they are needed, and to simplify ciftbx.cmn and
ciftbx.sys by using 1ncLUDES of the files ciftbx.cmv and ciftbx.cmf.
The file ciftbx.cmv contains the definitions of the essential CIFtbx
data structures as common blocks, for inclusion in both ciftbx.cmn
for user applications and in ciftbx.sys for the CIFtbx library rou-
tines themselves. Most compilers handle the INCLUDE statement,
but, if necessary, a user may replace any or all of the INcLUDE

Table 5.4.12.1. Parameter statements in CIFtbx

NUMCHAR Maximum number of characters in data names (default 48)

MAXBUF Maximum number of characters in a line (default 200,
increased to 4096 in CIFtbx 2.7 and later)

NUMPAGE Number of memory resident pages (default 10)

NUMCPP Number of characters per page (default 16 384)

NUMDICT Number of entries in dictionary tables (default 3200)

NUMHASH Number of hash table entries (a modest prime, default 53)

NUMBLOCK Number of entries in data-block tables (default 500)

NUMLOOP Number of loops in a data block (default 50)

NUMITEM Number of items in a loop (default 50)

MAXTAB Maximum number of tabs in output CIF line (default 10)

MAXBOOK Maximum number of simultaneous bookmarks (default 1000)

statements with the contents of the indicated file. For example, the
only non-comments in ciftbx.cmn are

‘ciftbx.cmv’
'ciftbx.cmf’

include
include

This means that the file ciftbx.cmn could be replaced by a con-
catenation of the two files ciftbx.cmv and ciftbx.cmf.

5.4.12.4. Use of ENDDO

CIFtbx makes some use of the ENDDO statement (as well as
nested IF, THEN, ELSE, ENDIF constructs) to improve readability of
the source code. Most compilers accept the ENDDO statement, but if
conversion is needed then constructs of the form

do index = istart, iend, incr
enddo
should be changed to
do nnn index = istart, iend, incr
nnn continue

where nnn is a unique statement number, not used elsewhere in the
same routine.

5.4.12.5. Names of internal routines

The following routines are used internally by later versions of
CIF'tbx. If these names are needed for other routines, then changes
in the library will be needed to avoid conflicts.

(a) Variable initialization:

block data

Critical CIFtbx variables are initialized with data statements in
a block data routine.

(b) Control of floating-point exceptions:

subroutine clearfp

If a system requires special handling of floating-point excep-
tions, the necessary calls should be added to this subroutine.

(c) Message processing:

subroutine err (mess)
character mess* (*)

subroutine warn (mess)
character mess* (*)

subroutine cifmsg (flag, mess)
character mess* (*), flag*(¥)

5.4. CIFTBX: FORTRAN TOOLS FOR MANIPULATING CIFS

Error and warning messages are processed through these three
routines.

(d) Internal service routines:

subroutine dcheck
(name, type, flag,
logical flag, tflag
character namex* (*),
subroutine eotext
subroutine eoloop
subroutine excat
(sfname, bcname, lbcname)
character* (*) sfname, bcname
integer lbcname
subroutine getitm (name)
character name* (*)
subroutine getstr
subroutine getlin
character flag*4
subroutine putstr (string)
character string* (*)

tflag)

type*4

(flag)

These routines are used internally by the library. The subrou-
tine dcheck validates names against dictionaries. The subroutines
eotext and eoloop are used to ensure termination of loops and text
strings. The subroutines getitm, getstr and get1in extract items,
strings and lines from the input CIF. The subroutine putstxr writes
strings to the output CIF.

(e) Numeric routines:
subroutine ctonum

subroutine putnum (numb,
double precision numb,

sdev, prec)
sdev, prec

The routine ctonum converts a string to a number and its stan-
dard uncertainty. The subroutine putnum converts a number and
standard uncertainty to an output string.

(f) String manipulation:

subroutine detab

integer function lastnb
character str* (*)

character* (MAXBUF) function locase
character name* (*)

(str)

(name)

The subroutine detab converts tabs to blanks. The function
lastnb finds the column position of the last non-blank character
in a string. The function 1ocase converts a string to lower case.

(g) Hash-table processing:

subroutine hash find (name, name_list,

chain list, list length, num list,
hash_table, hash length, ifind)
character name* (*),

name_list (list_length)
integer hash length,

chain_list (list_length),

hash table (hash length), ifind

subroutine hash store (name, name list,

chain_list, list_length, num list,
hash table, hash length, ifind)
character namex* (*),

name_list (list length)
integer hash length,

chain list(list_ length),

hash table (hash length), ifind

integer function hash value
character name* (*)
integer hash length

(name, hash_ length)

These routines are used to manipulate the internal hash tables
used by the library.

537

5.4.12.6. Use of the underscore character

All the externally accessible CIFtbx commands and variables
terminate with the underscore character. This works well on most
systems, but can cause occasional problems, because traditional
Fortran does not include the underscore in the character set and
some operating systems reserve the underscore as a system flag,
for example to distinguish C-language library routines from those
written in Fortran. If conversion is needed, and the local com-
piler allows long variable and subroutine names, then the simplest
approach would be to make a local variant of CIFtbx in which
every occurrence of underscore in a function, subroutine or vari-
able name is changed to a distinctive character pattern (e.g. ‘CIF’
or ‘qq’), but caution is needed, since there are many character
strings used in the library that include the underscore. For exam-
ple, in changing the variable 1oop_ to loopClIF, it would be a mis-
take to change the statement

if (strg_(1:5).eq.’loop_ ')
type_='loop’

to

if (strg_(1:5).eqg.’loopCIF’)
type_='loop’

5.4.12.7. Names longer than six characters

CIFtbx uses some function, subroutine and variable names
longer than six characters to improve readability, but, in most
cases, consistent truncation of all uses of a name to six characters
will not cause any problems.

5.4.12.8. File management

CIF'tbx allows the user to read from one CIF while writing to
another. The input CIF is first copied to a direct-access file to
allow random access to desired portions of the input CIF. Since
CIF allows data items to be presented in any order, the alterna-
tives to the use of a direct-access file would have been to cre-
ate memory-resident data structures for the entire CIF or to track
position and make multiple search passes through the file as data
items are requested. When programming for personal and labora-
tory computers with limited memory and which may lack virtual
memory capabilities, assuming the availability of enough mem-
ory for large CIFs would greatly restrict the applications within
which CIFtbx could be used. However, the disk accesses involved
in using a direct-access file slow execution. When working on
larger computers, execution speed can be increased at the expense
of memory by increasing the number of memory-resident pages
(see the parameter NUMPAGE above). If the number of pages times
the number of characters per page (Numcpp) is large enough to hold
the entire CIF, the application will run much faster.

Direct reading of the input CIF, making multiple passes when
data items are requested in a different order to that in which they
are presented in the CIF, is only practical when the number of
out-of-order requests is small and the applications will not need
to be used as a filter, perhaps reading the output of another pro-
gram ‘on-the-fly’. Since we cannot predict the range of applica-
tions and CIFs for which CIFtbx will be used, and direct reading
could become impossibly slow, CIFtbx uses a direct-access file.

The processing of an output CIF is simpler than reading a CIF.
The application determines the order in which the writing is to be
done. No sorting is normally needed. Therefore CIFtbx writes an
output CIF directly.

5. APPLICATIONS

5.4.12.9. Case sensitivity

A CIF may contain data names in upper, lower or a mixture of
cases. Internally, CIFtbx does all its name comparisons in lower
case, using the function locase (see above) to convert. Good
style, however, dictates the use of certain case combinations in
certain names. Therefore CIFtbx does this lower-case conversion
as needed, preserving the original case for whatever use may be
desired. An application needing maximum speed and which does
not need to preserve the cases in the original CIF might consider
doing the case conversion once and removing the use of locase.

5.4.12.10. Management of white space

CIF does not care about white space. One blank or tab is equiv-
alent to many blanks or tabs or empty lines in separating data
names from values and values from one another. The internal rou-
tine getstr extracts the next white-space-delimited string, using
getlintodeliver input lines from the direct-access file as required.
Since Fortran does not provide dynamic memory allocation, this
approach presents a problem with multi-line text fields. Rather
than allocate a large fixed space that might not hold still larger
text fields, the library delivers those strings one line at a time. As
with case sensitivity, CIFtbx does white-space scanning repeat-
edly, keeping the original presentation (including tabs) available
should an application need access to it. The author of an applica-
tion needing maximum speed, not needing the original presenta-
tion and wishing to conserve disk space might wish to modify the
operation of CIFtbx to remove all comments and compress all sep-
arating white space to single blanks or line terminators in an initial
sweep.

5.4.13. Distribution

Version 2.6.4 and an early release of version 3 of CIFtbx are
included on the accompanying CD-ROM. As later versions are
developed they will be available from the IUCr (http://www.

538

iucr.org/iucr-top/cif) and authors’
sons.com/software/ciftbx) web sites.

The release kit is a compressed C-shell archive ciftbx.cshar.Z
or a compressed shell archive ciftbx.shar.Z. Only one is needed.
The uncompressed files ciftbx.cshar or ciftbx.shar are needed for
implementation.

(http://www.bernstein-plus-

We are grateful to Frances C. Bernstein for her helpful comments
and suggestions.

References

Bernstein, F. C. & Bernstein, H. J. (1996). Translating mmCIF data into
PDB entries. Acta Cryst. A52 (Suppl.), C576. Software available at
http://www.bernstein-plus-sons.com/software/cif 2pdb.

Bernstein, H. J. (1997). cif2cif. CIF copy program. Bernstein +
Sons, Bellport, NY, USA. Included in http://www.bernstein-plus-
sons.com/software/ciftbx.

Bernstein, H. J., Bernstein, F. C. & Bourne, P. E. (1998). CIF applica-
tions. VIII. pdb2cif: translating PDB entries into mmCIF format. J.
Appl. Cryst. 31, 282-295. Software available at http://www.bernstein-
plus-sons.com/software/pdb2cif.

Bernstein, H. J. & Hall, S. R. (1998). CIF applications. VIL
CYCLOPS?2: extending the validation of CIF data names. J. Appl.
Cryst. 31, 278-281. Software available at http://www.bernstein-plus-
sons.com/software/ciftbx/cyclops.src.

Bray, T., Paoli, J. & Sperberg-McQueen, C. M. (1998). Extensible
Markup Language (XML). W3C recommendation 10-February-1998.
http://www.w3.0rg/TR/1998/REC-xml-19980210.

Hall, S. R. (1993a). CIF applications. 1I. CIFIO: for CIF input/output in
the Xtal system. J. Appl. Cryst. 26, 474—479.

Hall, S. R. (1993b). CIF applications. IV. CIFtbx: a tool box for manipu-
lating CIFs. J. Appl. Cryst. 26, 482494,

Hall, S. R. & Bernstein, H. J. (1996). CIF applications. V. CIFtbx2:
extended tool box for manipulating CIFs. J. Appl. Cryst. 29, 598—603.

Keller, P. A. (1996). A mmCIF toolbox for CCP4 applications. Acta Cryst.
AS2 (Suppl.), C576.

Murray-Rust, P. & Rzepa, H. (1999). Chemical markup, XML and the
Worldwide Web. 1. Basic principles. J. Chem. Inf. Comput. Sci. 39, 928—
942.

references

http://it.iucr.org/Ga/ch5o4v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

