
5.6. CBFlib: AN ANSI C LIBRARY FOR MANIPULATING IMAGE DATA

Start

��
Create handle: cbf_make_handle

��
Load data structures: cbf_read_file

��
Select datablock: cbf_select_datablock

��
Select category: cbf_select_category

��

��

Select row: cbf_select_row

��

��

Select column: cbf_select_column

��

��

Get value: cbf_get_value
or cbf_get_integerarray

��

Fig. 5.6.1.2. Flow chart for a typical application reading CBF/imgCIF data.

The general approach to reading CBF/imgCIF data with CBFlib
is to create an empty data structure with cbf_make_handle, load
the data structures with cbf_read_file and then use nested loops
to work through data blocks, categories, rows and columns in turn
to extract values. Conceptually, all data values are held in the
memory-resident data structures. In practice, however, only point-
ers to text fields with image data are held in memory. The data
themselves remain on disk until explicitly referenced.

The basic flow of an application writing CBF/imgCIF data with
the low-level CBFlib functions is shown in Fig. 5.6.1.3.

The general approach to writing CBF/imgCIF data with CBFlib
is to create empty data structures with cbf_make_handle and load
the data structures with nested loops, working through data blocks,
categories, rows and columns in turn, to store values. The major
difference from the nested loops used for reading is that empty
columns are created before data are stored into the data structures
row by row. Alternatively, the data could be stored column by col-
umn. Finally, the fully loaded memory data structures are written
out with cbf_write_file. As with reading, text fields with image
data are actually held on disk.

5.6.2. CBFlib function descriptions

All CBFlib functions have two common characteristics: (i) they
return an integer equal to 0 for success or an error code for fail-
ure; (ii) any pointer argument for the result of an operation can be
safely set to NULL. The error codes are given in Table 5.6.1.1.

CBFlib provides two low-level functions to create or destroy the
structure used to hold a data set:
cbf_make_handle

cbf_free_handle

There are two functions to copy a data set from or into a file:
cbf_read_file

cbf_write_file

Start

��
Create handle: cbf_make_handle

��
Create datablock: cbf_new_datablock

��

��

Create category: cbf_new_category

��

��

��
Create columns: cbf_new_column

��

		

Select row: cbf_new_row

��

Select column: cbf_select_column

��

��

Set value: cbf_set_value
or cbf_set_integerarray

��

Write out data structures: cbf_write_file

Fig. 5.6.1.3. Flow chart for an application writing CBF/imgCIF data.

The data structures ‘behind’ the handles retain pointers to cur-
rent locations. This facilitates scanning through a CIF or CBF
by data blocks, categories, rows and columns. The term ‘rewind’
refers to setting the internal pointer for the type of item specified
so that the first such item is pointed to.

In general, CIF does not permit duplication of the names of data
blocks or category names. In practice, however, duplications do
occur. CBFlib provides ‘force’ variants of some functions to allow
creation of duplicate names.

In CBFlib, the term ‘set’ refers to changing the name of the cur-
rently specified item. The term ‘reset’ refers to emptying a data
block or category without deleting it. The term ‘remove’ refers to
deleting a data block, category, column or row. The terms ‘select’
and ‘next’ refer to finding the designated item by number, while
the term ‘find’ refers to finding the designated item by name.

CBFlib provides the following functions to manage data blocks
and categories:

cbf_set_datablockname

cbf_

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

new

force_new

reset

remove

rewind

select

next

find

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

{
_datablock

_category

}

cbf_reset_datablocks

cbf_count

{
_datablocks

_categories

}

cbf_

{
datablock

category

}

_name

545

International Tables for Crystallography (2006). Vol. G, Section 5.6.2, pp. 545–552.

Copyright © 2006 International Union of Crystallography

http://it.iucr.org/Ga/ch5o6v0001/sec5o6o2/

5. APPLICATIONS

The following functions manage columns and rows:

cbf_

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

new

remove

rewind

next

find

count

select

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

{
_column

_row

}

cbf_column_name

cbf_row_number

cbf_

{
insert

delete

}

_row

cbf_find_nextrow

The following functions are provided to manage data values:

cbf_

{
get

set

}

⎧
⎪⎪⎨

⎪⎪⎩

_value

_integervalue

_doublevalue

_integerarray

⎫
⎪⎪⎬

⎪⎪⎭

cbf_get_integerarrayparameters

Two macro definitions are provided to facilitate the handling of
errors:

cbf_failnez

cbf_onfailnez

CBFlib also provides higher-level routines to simplify the man-
agement of complex CBF/imgCIF data sets:

cbf_read_template

cbf_

{
get

set

}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

_diffrn_id

_crystal_id

_wavelength

_polarization

_divergence

_gain

_overload

_integration_time

_time

_date

_image

_axis_setting

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

cbf_count_elements

cbf_get_element_id

cbf_set_current_time

cbf_get_image_size

cbf_

{
construct

free

}{
_goniometer

_detector

}

cbf_get_rotation_

{
axis

range

}

cbf_rotate_vector

cbf_get_reciprocal

cbf_get_

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

beam_center

detector_distance

detector_normal

pixel_coordinates

pixel_normals

pixel_area

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

5.6.2.1. Low-level CBFlib functions

The prototypes for low-level CBFlib functions are defined in
the header file cbf.h, which should be included in any program
that uses CBFlib. As noted previously, every function returns an

Table 5.6.2.1. Formal parameters for low-level CBFlib functions

array Untyped array, typically holding a pointer to an image
binary_id Integer identifier of a binary section
categories Integer used for a count of categories
category Integer ordinal of a category, counting from 0
categoryname Character string; the name of a category
ciforcbf Integer; selects the format in which the binary sections are

written (CIF/CBF)
column Integer ordinal of a column, counting from 0
columnname Character string; the name of a column
columns Integer count of columns in a category
compression Integer designating the compression method used
datablock Integer ordinal of a data block, counting from 0
datablockname Character string; the name of a data block
datablocks Integer count of data blocks in a CBF/imgCIF data set
elements Number of elements in the array
elements_read Pointer to the destination number of elements actually read
elsigned Set to nonzero if the destination array elements are signed
elsize Size in bytes of each array element
elunsigned Pointer to an integer; set to 1 if the elements can be read as

unsigned integers
encoding Integer; selects the type of encoding used for binary

sections and the type of line termination in imgCIF files
file File descriptor
handle CBF handle
headers Integer; controls/selects the type of header in CBF binary

sections and message digest generation
maxelement Integer; largest element
minelement Integer; smallest element
number Integer or double value
readable Integer; if nonzero: this file is random-access and readable,

and can be used as a buffer
row Integer; row ordinal
rows Integer; row count
value Integer or double value

integer equal to 0 to indicate success or an error code on failure
(Table 5.6.1.1).

The arguments to CBFlib functions are based on a view of a
CBF/imgCIF data set as a tree (Fig. 5.6.1.1). The root of the tree
is the data set and is identified by a handle that points to the data
structures representing that tree. The main branches of the tree are
the data blocks, identified by name or by number. Within each data
block, the tree branches into categories, each of which branches
into columns. Categories and columns also are identified by name
or by number. Within each column is an array of values, the rows
of which are identified by number. The current data block, cate-
gory, column and row are stored in the data structures of a data
set.

The following function descriptions include the formal parame-
ters. When a ‘∗’ appears before a formal parameter, it is a pointer to
the relevant value, rather than the actual value. The formal param-
eters for the low-level CBFlib functions are given in Table 5.6.2.1.

Before working with a CBF (or CIF), it is necessary to create
a handle. When work with the CBF is completed, the handle and
associated data structures should be released:
int cbf_make_handle (cbf_handle *handle);

int cbf_free_handle (cbf_handle handle);

Normally, processing cannot continue if a handle is not created.
Typical code to create a handle is:

#include "cbf.h"
cbf_handle cif;

if (cbf_make_handle (&cif)) {
fprintf(stderr,

"Failed to create handle for input_cif\n");
exit(1);

}

546

5.6. CBFlib: AN ANSI C LIBRARY FOR MANIPULATING IMAGE DATA

Table 5.6.2.2. Values for headers in cbf read file

MSG_DIGEST Check that the digest of the binary section matches any
header value. If the digests do not match, the call will
return CBF_FORMAT. The evaluation and comparison
is delayed (a ‘lazy’ evaluation) to ensure maximal
processing efficiency. If an immediate evaluation is
desired, see MSG_DIGESTNOW below.

MSG_DIGESTNOW Check that the digest of the binary section matches any
header value. If the digests do not match, the call will
return CBF_FORMAT. This evaluation and comparison
is performed during initial parsing of the section to
ensure timely error reporting at the expense of
processing efficiency. If a more efficient delayed (‘lazy’)
evaluation is desired, see MSG_DIGEST above.

MSG_NODIGEST Do not check the digest (default).

Once a handle has been created, the data structures can be
loaded with all the information held in a CBF file:
int cbf_read_file (cbf_handle handle, FILE *file,

int headers);

Conceptually, all data values are associated with the handle at
the cbf_read_file call. In practice, however, only the non-binary
data are actually stored in memory. To work with potentially large
binary sections most efficiently, these are skipped until explic-
itly referenced. For this reason, file must be a random-access
file opened in binary mode [fopen (..., "rb")] and must not be
closed by the calling program. CBFlib will call fclose when the
file is no longer required.

The headers parameter controls the handling of any message
digests embedded in the binary sections (Table 5.6.2.2). A headers

value of MSG_DIGEST will cause the code to compare the digest
of the binary section with any header message digest value. To
maximize processing efficiency, this comparison will be delayed
until the binary section is actually read into memory or copied
(a ‘lazy’ evaluation). If immediate evaluation is required, use
MSG_DIGESTNOW. In either case, if the digests do not match, the
function in which the evaluation is taking place will return the
error CBF_FORMAT. To ignore any digests, use the headers value
MSG_NODIGEST.

The cbf_write_file call writes out the data associated with a
CBF handle:
int cbf_write_file (cbf_handle handle, FILE *file,

int readable, int ciforcbf, int headers,

int encoding);

This call has several options controlling whether binary sections
are written unencoded (CBF) or encoded in ASCII to conform to
the CIF syntax (imgCIF), the type of headers in the binary sec-
tions, and the type of ASCII encoding and line termination used.
The acceptable values for ciforcbf are CIF for ASCII-encoded
binary sections or CBF for unencoded binary sections. The headers
parameter (Table 5.6.2.3) can take the value MIME_HEADERS to
select MIME-type binary section headers or MIME_NOHEADERS for
simple ASCII headers. The value MSG_DIGEST will generate digests
for validation of the binary data and the value MSG_NODIGEST will
skip digest evaluation. The header and digest flags may be com-
bined using the logical OR operator.

Similarly, there are several combinable flags for the parame-
ter encoding (Table 5.6.2.4). ENC_BASE64 selects BASE64 encod-
ing, ENC_QP selects quoted-printable encoding, and ENC_BASE8,
ENC_BASE10 and ENC_BASE16 select octal, decimal and hexa-
decimal, respectively. ENC_FORWARD maps bytes to words for-
ward (1234) for BASE8, BASE10 or BASE16 encoding
and ENC_BACKWARD maps bytes to words backward (4321).
Finally, ENC_CRTERM terminates lines with carriage return (CR)

Table 5.6.2.3. Values for headers in cbf write file

Values may be combined bit-wise.

MIME_HEADERS Use MIME-type headers (default)
MIME_NOHEADERS Use simple ASCII headers
MSG_DIGEST Generate message digests for binary data validation
MSG_NODIGEST Do not generate message digests (default)

and ENC_LFTERM terminates lines with line feed (LF) (thus
ENC_CRTERM|ENC_LFTERM will use CR LF).

CBFlib maintains temporary storage on disk as necessary for
files to be written, so that file does not have to be random-access.
However, if it is random-access and readable, resources can be
conserved by setting readable nonzero.

The remaining low-level functions are involved in navigating
the tree structure, creating and deleting data blocks, categories and
table columns and rows, and retrieving or modifying data values.

The navigation functions are:
int cbf_find_datablock (cbf_handle handle,

const char *datablockname);

int cbf_find_category (cbf_handle handle,

const char *categoryname);

int cbf_find_column (cbf_handle handle,

const char *columnname);

int cbf_find_row (cbf_handle handle,

const char *value);

int cbf_find_nextrow (cbf_handle handle,

const char *value);

int cbf_select_datablock (cbf_handle handle,

unsigned int datablock);

int cbf_select_category (cbf_handle handle,

unsigned int category);

int cbf_select_column (cbf_handle handle,

unsigned int column);

int cbf_select_row (cbf_handle handle,

unsigned int row);

int cbf_rewind_datablock (cbf_handle handle);

int cbf_rewind_category (cbf_handle handle);

int cbf_rewind_column (cbf_handle handle);

int cbf_rewind_row (cbf_handle handle);

int cbf_next_datablock (cbf_handle handle);

int cbf_next_category (cbf_handle handle);

int cbf_next_column (cbf_handle handle);

int cbf_next_row (cbf_handle handle);

The function cbf_find_datablock selects the first data block
with name datablockname as the current data block. Similarly,
cbf_find_category selects the category within the current data
block with name categoryname and cbf_find_column selects
the corresponding column within the current category. The func-
tion cbf_find_row differs slightly in that it selects the first
row in the current column with the corresponding value and
cbf_find_nextrow selects the row with the corresponding value
following the current row. Note that selecting a new data block
makes the current category, column and row undefined and that
selecting a new category similarly makes the column and row
undefined. In contrast, repositioning by column does not change
the current row and repositioning by row does not change the cur-
rent column.

The remaining functions navigate on the basis of the order
of the data blocks, categories, columns and rows. Thus,
cbf_select_datablock selects data-block number datablock,
counting from 0, cbf_rewind_datablock selects the first data

547

5. APPLICATIONS

Table 5.6.2.4. Values for encodings in cbf write file

Values may be combined bit-wise.

ENC_BASE64 Use BASE64 encoding (default)
ENC_QP Use quoted-printable encoding
ENC_BASE8 Use BASE8 (octal) encoding
ENC_BASE10 Use BASE10 (decimal) encoding
ENC_BASE16 Use BASE16 (hexadecimal) encoding
ENC_FORWARD For BASE8, BASE10 or BASE16 encoding, map bytes to

words forward (1234) (default on little-endian machines)
ENC_BACKWARD For BASE8, BASE10 or BASE16 encoding, map bytes to

words backward (4321) (default on big-endian machines)
ENC_CRTERM Terminate lines with CR
ENC_LFTERM Terminate lines with LF (default)

block and cbf_next_datablock selects the data block following
the current data block.

All of these functions return CBF_NOTFOUND if the requested
object does not exist.

The ‘count’ functions evaluate the number of data blocks in
the data set, the number of categories in the current data block
and the number of columns or rows in the current category:
int cbf_count_datablocks (cbf_handle handle,

unsigned int *datablocks);

int cbf_count_categories (cbf_handle handle,

unsigned int *categories);

int cbf_count_columns (cbf_handle handle,

unsigned int *columns);

int cbf_count_rows (cbf_handle handle,

unsigned int *rows);

The ‘name’ functions retrieve the current data block, category or
column names:
int cbf_datablock_name (cbf_handle handle,

const char **datablockname);

int cbf_set_datablockname (cbf_handle handle,

const char *datablockname);

int cbf_category_name (cbf_handle handle,

const char **categoryname);

As rows do not have names, the corresponding function is:
int cbf_row_number (cbf_handle handle,

unsigned int *row);

To create new entities within the tree, CBFlib provides the func-
tions:
int cbf_new_datablock (cbf_handle handle,

const char *datablockname);

int cbf_new_category (cbf_handle handle,

const char *categoryname);

int cbf_new_column (cbf_handle handle,

const char *columnname);

int cbf_new_row (cbf_handle handle);

int cbf_insert_row (cbf_handle handle,

unsigned int row);

int cbf_force_new_datablock (cbf_handle handle,

const char *datablockname);

int cbf_force_new_category (cbf_handle handle,

const char *categoryname);

The ‘new’ functions add a new data block within the data set, a new
category in the current data block, or a new column or row within
the current category, and make it the current data block, category,
column or row, respectively. If the data block, category or column
already exists, then the function simply makes it the current data
block, category or column. The function cbf_new_row adds the

row to the end of the current category. cbf_insert_row provides
the ability to insert a row before ordinal row, starting from 0. The
newly inserted row gets the row ordinal row and the row that origi-
nally had that ordinal and all rows with higher ordinals are pushed
downwards.

In general, CIF does not permit duplication of the names of data
blocks or categories. In practice, however, duplications do occur.
CBFlib provides ‘force’ variants to allow creation of duplicate
data-block and category names. Because, in this case, the program
analysing the resulting file can only distinguish the duplicates by
ordinal, these variants are not recommended for general use.

The following functions are used to remove entities from the
tree:
int cbf_remove_datablock (cbf_handle handle);

int cbf_remove_category (cbf_handle handle);

int cbf_remove_column (cbf_handle handle);

int cbf_remove_row (cbf_handle handle);

int cbf_delete_row (cbf_handle handle,

unsigned int row);

int cbf_reset_datablocks (cbf_handle handle);

int cbf_reset_datablock (cbf_handle handle);

int cbf_reset_category (cbf_handle handle);

The basic ‘remove’ functions delete the current data block, cate-
gory, column or row. Note that removing a data block makes the
current data block, category, column and row undefined; remov-
ing a category makes the current category, column and row unde-
fined. Removing a column makes the current column undefined,
but leaves the current row intact, and removing a row leaves the
current column intact. The function cbf_delete_row is similar to
cbf_remove_row except that it removes the specified row in the
current category. If the current row is not the deleted row, then it
will remain valid.

All the categories in all data blocks, all the categories in the cur-
rent data block or all the entries in the current category may be
removed using the ‘reset’ functions.

When a column and row within a category have been selected,
the entry value may be examined or modified:
int cbf_get_value (cbf_handle handle,

const char **value);

int cbf_set_value (cbf_handle handle,

const char *value);

int cbf_get_integervalue (cbf_handle handle,

int *number);

int cbf_set_integervalue (cbf_handle handle,

int number);

int cbf_get_doublevalue (cbf_handle handle,

double *number);

int cbf_set_doublevalue (cbf_handle handle,

const char *format;

int cbf_get_integerarrayparameters (cbf_handle handle,

unsigned int *compression, size_t *elsize,

size_t *elements, int *maxelement);

int cbf_get_integerarray (cbf_handle handle,

int *binary_id, int elsigned,

size_t *elements_read);

int cbf_set_integerarray (cbf_handle handle,

unsigned int compression, void *array,

size_t elements);

A value within a CBF/imgCIF data set may be a simple charac-
ter string, an integer or real number, or an array of integers. The
functions cbf_get_value and cbf_set_value provide the basic
functionality for normal CIF values, retrieving and modifying the

548

5.6. CBFlib: AN ANSI C LIBRARY FOR MANIPULATING IMAGE DATA

Table 5.6.2.5. Values for the parameter compression in
cbf get integerarrayparameters and cbf set integer-

array

CBF_CANONICAL Canonical-code compression (Section 5.6.3.1)
CBF_PACKED CCP4-style packing (Section 5.6.3.2)
CBF_NONE No compression

current entry as a string. The functions cbf_get_integervalue

and cbf_get_doublevalue interpret the retrieved string as an
integer or real value and the functions cbf_set_integer and
cbf_set_doublevalue convert the number argument into a string
before setting the entry.

The functions for working with binary sections are more com-
plicated as they must take into account compression, array size and
the variety of different integer types available on different systems:
signed/unsigned and various sizes.

The function cbf_get_integerarrayparameters retrieves the
parameters of the current, binary, entry. The compression argu-
ment is set to the compression type used (Table 5.6.2.5). At
present, this may take one of three values: CBF_CANONICAL,
for canonical-code compression (see Section 5.6.3.1 below);
CBF_PACKED, for CCP4-style packing (see Section 5.6.3.2 below);
or CBF_NONE, for no compression. [Note: CBF_NONE is by far the
slowest scheme of the three and uses much more disk space. It
is intended for routine use with small arrays only. With large
arrays (like images) it should be used only for debugging.] The
binary_id value is a unique integer identifier for each binary sec-
tion, elsize is the size in bytes of the array entries, elsigned
and elunsigned are nonzero if the array can be read as unsigned
or signed, respectively, elements is the number of entries in
the array, and minelement and maxelement are the lowest and
highest elements. If a destination argument is too small to hold
a value, it will be set to the nearest value and the function
will return CBF_OVERFLOW. If the current entry is not binary,
cbf_get_integerarrayparameters will return CBF_ASCII.

cbf_get_integerarray reads the current binary entry into an
integer array. The parameter array points to an array of elements
interpreted as integers. Each element in the array is signed if
elsigned is nonzero and unsigned otherwise, and each element
occupies elsize bytes. The argument elements_read is set to the
number of elements actually obtained. If the binary section does
not contain sufficient entries to fill the array, the function returns
CBF_ENDOFDATA. As before, the function will return CBF_OVERFLOW

on overflow and CBF_ASCII if the entry is not binary.
cbf_set_integerarray sets the current binary or ASCII entry

to the binary value of an integer array. As before, the accept-
able values for compression are CBF_PACKED, CBF_CANONICAL and
CBF_NONE. Each binary section should be given a unique integer
identifier binary_id.

Two macros are provided to facilitate processing and propaga-
tion of error returns: one to return from the current function imme-
diately and one to execute a given command first:

#define cbf_failnez(f) \
{int err; err = (f); if (err) return err; }

#define cbf_onfailnez(f,c) \
{int err; err = (f); if (err) {{c; }return err; }}

If the symbol CBFDEBUG is defined, alternative definitions that print
out the error number as given in Table 5.6.1.1 are used:

#define cbf_failnez(x) \
{int err; err = (x); \
if (err) { fprintf (stderr, \

"\nCBFlib error %d in \"x\"\n", \
err); return err; }}

#define cbf_onfailnez(x,c) \
{int err; err = (x); \

if (err) { fprintf (stderr, \
"\nCBFlib error %d in \"x\"\n", \
err); \
{ c; } return err; }}

5.6.2.2. High-level CBFlib functions

The high-level CBFlib functions provide a level of abstrac-
tion above the CIF file structure and their prototypes are defined
in the header file cbf simple.h. Most of these functions simply
use the low-level routines to navigate the CBF/imgCIF struc-
ture and read and modify data entries, and consequently expect
a cbf_handle argument. There are also, however, additional sets
of functions used to analyse the geometry of the goniometer
and detector. These functions use additional handles of type
cbf_goniometer and cbf_detector, respectively. All functions
return the same error codes as the low-level functions do. The
function return values are given in Table 5.6.1.1. The formal
parameters for the high-level CBFlib functions are given in
Table 5.6.2.6.

5.6.2.3. General high-level functions

The general high-level functions use the low-level routines to
accomplish common tasks with a single call.

The first of these is used to facilitate the preparation of the com-
plex CBF/imgCIF header structure:

int cbf_read_template (cbf_handle handle, FILE *file);

cbf_read_template simply reads the CBF/imgCIF file file into
the data structure associated with the given handle and selects the
first data block. It is typically used to read a template – an imgCIF
file populated with data entries, but without any binary sections,
into which experimental information can then be inserted. Tem-
plate files are discussed further in Section 5.6.4 below.

The value of _diffrn_radiation_wavelength.wavelength can
be retrieved or set. The functions
int cbf_get_wavelength (cbf_handle handle,

double *wavelength);

int cbf_set_wavelength (cbf_handle handle,

double wavelength);

operate on the categories DIFFRN_RADIATION and DIFFRN_

RADIATION_WAVELENGTH. The wavelength is found indi-
rectly. The value of _diffrn_radiation.wavelength_id is
retrieved and used to find a matching row in the DIFFRN_

RADIATION_WAVELENGTH category, from which the value of
_diffrn_radiation_wavelength.wavelength is obtained.

The value of the ratio of the intensities of the polarization com-
ponents _diffrn_radiation.polarizn_source_ratio and the
value of the angle _diffrn_radiation.polarizn_source_norm

between the normal to the polarization plane and the laboratory
Y axis can be retrieved or set. The functions
int cbf_get_polarization (cbf_handle handle,

double *polarizn_source_ratio,

double *polarizn_source_norm);

int cbf_set_polarization (cbf_handle handle,

double polarizn_source_ratio,

double polarizn_source_norm);

operate on the DIFFRN_RADIATION category.

549

5. APPLICATIONS

Table 5.6.2.6. Formal parameters for high-level CBFlib functions

array Pointer to image array data
axis_id Axis ID
center1 Displacement along the slow axis
center2 Displacement along the fast axis
compression Compression type
coordinate1 x component
coordinate2 y component
coordinate3 z component
crystal_id ASCII crystal ID
day Timestamp day (1–31)
detector Detector handle
diffrn_id ASCII diffraction ID
distance Distance
div_x_source Value of _diffrn_radiation.div_x_

source

div_x_y_source Value of _diffrn_radiation.div_x_y_
source

div_y_source Value of _diffrn_radiation.div_y_
source

element_id ASCII element ID
element_number Detector element counting from 0
elements Count of elements
elsigned Set to nonzero if the destination array elements

are signed
elsize Size in bytes of each destination array element
file File descriptor
gain Detector gain in counts per photon
gain_esd Gain e.s.d. value
goniometer Goniometer handle
handle CBF handle
hour Timestamp hour (0–23)
increment Increment value
index1 Slow index
index2 Fast index
initial1 x component of the initial vector
initial2 y component of the initial vector
initial3 z component of the initial vector
minute Timestamp minute (0–59)
month Timestamp month (1–12)
ndim1 Slow array dimension
ndim2 Fast array dimension
normal1 x component of the normal vector
normal2 y component of the normal vector
normal3 z component of the normal vector
overload Overload value
polarizn_source_norm Polarization normal
polarizn_source_ratio Polarization ratio
precision Timestamp precision in seconds
projected_area Apparent area in mm2

ratio Goniometer setting (0 = beginning of exposure,
1 = end)

real1 x component of the real-space vector
real2 y component of the real-space vector
real3 z component of the real-space vector
reciprocal1 x component of the reciprocal-space vector
reciprocal2 y component of the reciprocal-space vector
reciprocal3 z component of the reciprocal-space vector
reserved Unused; any value other than 0 is invalid
second Timestamp second (0–60.0)
start Start value
time Timestamp in seconds since 1 January 1970 or

integration time in seconds
timezone Time zone difference from universal time in

minutes or CBF_NOTIMEZONE
vector1 x component of the rotation axis
vector2 y component of the rotation axis
vector3 z component of the rotation axis
wavelength Wavelength in Å
year Pointer to the destination timestamp year

The values of the divergence parameters, represented by the data
names _diffrn_radiation.div_x_source, *.div_y_source and
*.div_x_y_source, can be retrieved or set. The functions
int cbf_get_divergence (cbf_handle handle,

double *div_x_source, double *div_y_source,

double *div_x_y_source);

int cbf_set_divergence (cbf_handle handle,

double div_x_source, double div_y_source,

double div_x_y_source);

operate on the DIFFRN_RADIATION category.
The values of _diffrn.id and _diffrn.crystal_id can be

retrieved or set:
int cbf_get_diffrn_id (cbf_handle handle,

const char **diffrn_id);

int cbf_set_diffrn_id (cbf_handle handle,

const char *diffrn_id);

int cbf_get_crystal_id (cbf_handle handle,

const char **crystal_id);

int cbf_set_crystal_id (cbf_handle handle,

const char *crystal_id);

Changing _diffrn.id also modifies the corresponding
*.diffrn_id entries in the DIFFRN_SOURCE, DIFFRN_RADIATION,
DIFFRN_DETECTOR and DIFFRN_MEASUREMENT categories.

The starting value and increment of an axis may be retrieved or
set:
int cbf_get_axis_setting (cbf_handle handle,

unsigned int reserved, const char *axis_id,

double *start, double *increment);

int cbf_set_axis_setting (cbf_handle handle,

unsigned int reserved, const char *axis_id,

double start, double increment);

The cbf_set_axis_setting call is used during the creation of a
CBF/imgCIF file to store the goniometer settings and rotation. The
cbf_get_axis_setting is not generally useful when interpreting
a file as there are no standard identifiers and the arrangement of
the experimental axes is not consistent. Much more useful are the
goniometer geometry functions described below.

The number of detector elements can be retrieved:
int cbf_count_elements (cbf_handle handle,

unsigned int *elements);

This is the number of rows in the DIFFRN_DETECTOR_ELEMENT cat-
egory. For each element, counting from 0, the detector identifier
(the *.detector_id entry) can be retrieved and the gain and over-
load values in the ARRAY_INTENSITIES category retrieved or set:
int cbf_get_element_id (cbf_handle handle,

unsigned int element_number,

const char **element_id);

int cbf_get_gain (cbf_handle handle,

unsigned int element_number,

double *gain, double *gain_esd);

int cbf_set_gain (cbf_handle handle,

unsigned int element_number, double gain,

double gain_esd);

int cbf_get_overload (cbf_handle handle,

unsigned int element_number, double *overload);

int cbf_set_overload (cbf_handle handle,

unsigned int element_number, double overload);

For each element, counting from 0, the values of the parameters
of the detector can be retrieved and some can be set. The value
of _diffrn_detector_element.id is retrieved as element_id.
The value of _diffrn_data_frame.array_id can be retrieved
as array_name. The values of _array_intensities.gain

and _array_intensities.gain_esd are retrieved as gain

550

5.6. CBFlib: AN ANSI C LIBRARY FOR MANIPULATING IMAGE DATA

and gain_esd. The value of _array_intensities.overload

can be retrieved or set as overload. The value of
_diffrn_scan_frame.integration_time can be retrieved or set
as integration_time.

Timestamp calls operate on the DATE entry in the
DIFFRN_SCAN_FRAME category:
int cbf_get_timestamp (cbf_handle handle,

unsigned int reserved, double *time,

int *timezone);

int cbf_set_timestamp (cbf_handle handle,

unsigned int reserved, double time,

int timezone, double precision);

int cbf_get_datestamp (cbf_handle handle,

unsigned int reserved, int *year, int *month,

int *day, int *hour, int *minute, double *second,

int *timezone);

int cbf_set_datestamp (cbf_handle handle,

unsigned int reserved, int year, int month,

int day, int hour, int minute, double second,

int timezone, double precision);

int cbf_set_current_timestamp (cbf_handle handle,

unsigned int reserved, int timezone)

cbf_get_timestamp and cbf_set_timestamp measure time
in seconds since 1 January 1970. cbf_get_datestamp and
cbf_set_datestamp work in terms of individual year, month,
day, hour, minute and second. The optional collection time
zone, timezone, is the difference from universal time in minutes;
precision is the fraction, in seconds, to which the time will be
recorded. cbf_set_current_timestamp sets the collection time-
stamp from the current time, to the nearest second.

Also in the DIFFRN_SCAN_FRAME category is the integration
time of the image:
int cbf_get_integration_time (cbf_handle handle,

unsigned int reserved, double *time);

int cbf_set_integration_time (cbf_handle handle,

unsigned int reserved, double time);

Finally, these functions include routines for working with binary
images:
int cbf_get_image_size (cbf_handle handle,

unsigned int reserved,

unsigned int element_number,

size_t *ndim1, size_t *ndim2);

int cbf_get_image (cbf_handle handle,

unsigned int reserved,

unsigned int element_number,

void *array, size_t elsize, int elsign,

size_t ndim1, size_t ndim2);

int cbf_set_image (cbf_handle handle,

unsigned int reserved,

unsigned int element_number,

unsigned int compression, void *array,

size_t elsize, int elsign, size_t ndim1,

size_t ndim2);

cbf_get_image_size retrieves the dimensions of detector element
element_number from the ARRAY_STRUCTURE_LIST category, set-
ting ndim1 and ndim2 to the slow and fast array dimensions, respec-
tively. These dimensions can be used to allocate memory before
calling cbf_get_image. cbf_get_image reads the image data from
detector element element_number into a signed or unsigned inte-
ger array of size ndim1 * ndim2 and cbf_set_image associates
image data with a detector element. As in the description of the
integer array functions, the compression argument can currently
take one of three values: CBF_CANONICAL, for canonical-code com-

pression (see Section 5.6.3.1); CBF_PACKED, for CCP4-style pack-
ing (see Section 5.6.3.2); or CBF_NONE, for no compression.

5.6.2.4. Goniometer geometry functions

A CBF/imgCIF file includes a geometric description of the
goniometer used to orient the sample during the experiment. Prac-
tical use of this information, however, is not trivial as it involves
combining data from several categories and analysing in three
dimensions the nested axes in which the description is framed (see
Section 3.7.3 for a discussion of the axis system). CBFlib provides
six functions to facilitate this task:
int cbf_construct_goniometer (cbf_handle handle,

cbf_goniometer *goniometer);

int cbf_free_goniometer (cbf_goniometer goniometer);

int cbf_get_rotation_axis (cbf_goniometer goniometer,

unsigned int reserved, double *vector1,

double *vector2, double *vector3);

int cbf_get_rotation_range (cbf_goniometer goniometer,

unsigned int reserved, double *start,

double *increment);

int cbf_rotate_vector (cbf_goniometer goniometer,

unsigned int reserved, double ratio,

double initial1, double initial2, double initial3,

double *final1, double *final2, double *final3);

int cbf_get_reciprocal (cbf_goniometer goniometer,

unsigned int reserved, double ratio,

double wavelength, double real1, double real2,

double real3, double *reciprocal1,

double *reciprocal2, double *reciprocal3);

cbf_construct_goniometer uses the data in the categories
DIFFRN_MEASUREMENT, DIFFRN_MEASUREMENT_AXIS, AXIS,
DIFFRN_SCAN_FRAME_AXIS and DIFFRN_SCAN_AXIS to construct
a geometric representation of the goniometer and initializes the
cbf_goniometer handle, goniometer. cbf_free_goniometer

frees the goniometer structure. cbf_get_ rotation_axis and
cbf_get_rotation_range get the normalized rotation vec-
tor, and the starting value and increment of the first rotating
axis of the goniometer, respectively. The cbf_rotate_vector

call applies the goniometer axis rotation to the given ini-
tial vector, with the ratio value specifying the goniome-
ter setting from 0.0 at the beginning of the exposure to 1.0
at the end, irrespective of the actual rotation range. Finally,
cbf_get_reciprocal transforms the given real-space vector
(real1, real2, real3) to the corresponding reciprocal-space
vector (reciprocal1, reciprocal2, reciprocal3). As before,
the transform corresponds to the goniometer initial position with
a ratio of 0.0 and the goniometer final position with a ratio of
1.0.

5.6.2.5. Detector geometry functions

In a similar manner, a CBF/imgCIF file includes a description
of the surface of each detector and the arrangement of the pixels in
space. CBFlib provides eight functions for analysing this descrip-
tion:
int cbf_construct_detector (cbf_handle handle,

cbf_detector *detector,

unsigned int element_number);

int cbf_free_detector (cbf_detector detector);

int cbf_get_beam_center (cbf_detector detector,

double *index1, double *index2,

double *center1, double *center2);

int cbf_get_detector_distance (cbf_detector detector,

double *distance);

551

5. APPLICATIONS

int cbf_get_detector_normal (cbf_detector detector,

double *normal1, double *normal2,

double *normal3);

int cbf_get_pixel_coordinates (cbf_detector detector,

double index1, double index2,

double *coordinate1, double *coordinate2,

double *coordinate3);

int cbf_get_pixel_normal (cbf_detector detector,

double index1, double index2,

double *normal1, double *normal2,

double *normal3);

int cbf_get_pixel_area (cbf_detector detector,

double index1, double index2,

double *area, double *projected_area);

cbf_construct_detector uses data from the categories
DIFFRN, DIFFRN_DETECTOR, DIFFRN_DETECTOR_ELEMENT,
DIFFRN_DETECTOR_AXIS, AXIS, ARRAY_STRUCTURE_LIST and
ARRAY_STRUCTURE_LIST_AXIS to construct a geometric repre-
sentation of detector element element_number and initializes the
cbf_detector handle, detector. cbf_free_detector frees the
detector structure; cbf_get_beam_center calculates the loca-
tion at which the beam intersects the detector surface, either
in terms of the pixel indices (index1, index2) along the slow
and fast detector axes, respectively, or the displacement in mil-
limetres along the slow and fast axes (center1, center2);
cbf_get_detector_distance and cbf_get_detector_normal

calculate the distance of the sample from the plane of the detector
surface and the normal vector of the detector at pixel (0, 0), respec-
tively; cbf_get_pixel_coordinates, cbf_get_pixel_normal and
cbf_get_pixel_area calculate the coordinates, normal vector, and
area and apparent area as viewed from the sample position of the
pixel with the given indices, respectively.

5.6.3. Compression schemes

Two schemes for lossless compression of integer arrays (such as
images) have been implemented in this version of CBFlib:

(i) an entropy-encoding scheme using canonical coding;
(ii) a CCP4-style packing scheme.

Both encode the difference (or error) between the current element
in the array and the prior element. Parameters required for more
sophisticated predictors have been included in the compression
functions and will be used in a future version of the library.

5.6.3.1. Canonical-code compression

The canonical-code compression scheme encodes errors in two
ways: directly or indirectly. Errors are coded directly using a sym-
bol corresponding to the error value. Errors are coded indirectly
using a symbol for the number of bits in the (signed) error, fol-
lowed by the error itself.

At the start of the compression, CBFlib constructs a table con-
taining a set of symbols, one for each of the 2n direct codes from
−2n−1 to 2n−1 − 1, one for a stop code and one for each of the
maxbits − n indirect codes, where n is chosen at compression
time and maxbits is the maximum number of bits in an error.
CBFlib then assigns to each symbol a bit code, using a shorter
bit code for the more common symbols and a longer bit code
for the less common symbols. The bit-code lengths are calculated
using a Huffman-type algorithm and the actual bit codes are con-
structed using the canonical-code algorithm described by Moffat
et al. (1997).

Table 5.6.3.1. Structure of compressed data using the canonical-code
scheme

Byte Value

1 to 8 Number of elements (64-bit little-endian
number)

9 to 16 Minimum element
17 to 24 Maximum element
25 to 32 (Reserved for future use)
33 Number of bits directly coded, n
34 Maximum number of bits encoded, maxbits
35 to 35 + 2n − 1 Number of bits in each direct code
35 + 2n Number of bits in the stop code
35 + 2n + 1 to

35 + 2n + maxbits − n Number of bits in each indirect code
35 + 2n + maxbits − n + 1 . . . Coded data

Table 5.6.3.2. Structure of compressed data using the CCP4-style scheme

Value in bits Number of bits
3 to 5 in each error

0 0
1 4
2 5
3 6
4 7
5 8
6 16
7 65

Byte Value

1 to 8 Number of elements (64-bit little-endian number)
9 to 16 Minimum element (currently unused)
17 to 24 Maximum element (currently unused)
25 to 32 (Reserved for future use)
33 . . . Coded data

The structure of the compressed data is described in Table
5.6.3.1.

5.6.3.2. CCP4-style compression

The CCP4-style compression writes the errors in blocks. Each
block begins with a 6-bit code. The number of errors in the block
is 2n, where n is the value in bits 0 to 2. Bits 3 to 5 encode the
number of bits in each error. The data structure is summarized in
Table 5.6.3.2.

5.6.4. Sample templates

The construction of CBF/imgCIF files can be simplified using tem-
plates. A template is itself an imgCIF file populated with data
entries but without any binary sections. This file is normally asso-
ciated with a CBF handle using the cbf_read_template call and
provides a framework into which images and other experiment-
specific data may be entered.

Fig. 5.6.4.1 is a sample template for an ADSC Quantum 4 detec-
tor (ADSC, 1997) with a κ-geometry diffractometer at Stanford
Synchrotron Radiation Laboratory (SSRL) beamline 1-5.

The template for a MAR345 image plate detector (MAR
Research, 1997) is almost identical. The major differences
are in the size of the array (2300 × 2300 versus 2304 ×
2304), the parameters for the CCD elements and the geom-
etry of the elements. Therefore a few of the values in the
AXIS, ARRAY_STRUCTURE_LIST, ARRAY_STRUCTURE_LIST_AXIS

and ARRAY_INTENSITIES categories are different, as listed in Fig.
5.6.4.2.

552 references

http://it.iucr.org/Ga/ch5o6v0001/references/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [641.000 859.000]
>> setpagedevice

