# Typographical conventions used in this volume

| Example                 | Use                                                                                                                                                                                                                                                                                            |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| _atom_site_label        | Bold monospaced type is used for data names and in example listings representing extracts from data files. If a data name has had to be broken at the end of a line, the break follows an underscore (_) or full point (.) character. Data names broken in this way are <i>not</i> hyphenated. |
| *_max                   | Wildcard construction used to indicate related data names sharing a common root prefix.                                                                                                                                                                                                        |
| _diffrn_, _diffrn_*     | All related data names sharing the specified prefix (the asterisk is used where it may not be apparent that a general class of items is indicated).                                                                                                                                            |
| data_code               | Sloping monospaced type (as in <i>code</i> ) is used to indicate variable components of a data name or other character literal string.                                                                                                                                                         |
| <datablock></datablock> | Monospaced type is used in formal grammars, to indicate individual tokens in the parsing of a byte stream and to indicate the verbatim value of text strings.                                                                                                                                  |
| ATOM_SITE               | Small capitals are used for categories of CIF data items.                                                                                                                                                                                                                                      |

## Layout of the CIF dictionaries

The data dictionaries included on the CD-ROM and represented in print in Part 4 are machine-readable ASCII files. The relations between the printed (column 1) and native ASCII (column 2) representations of the dictionaries are illustrated on the facing page for DDL1 dictionaries and inside the back cover for DDL2 dictionaries.

### Layout of DDL1 dictionaries

### **Description of a category**

DDL1 does not formally describe data categories (all data items in a looped list must belong to the same category). However, pseudo data names of type 'null' (5) are defined to allow textual descriptions of categories and to provide examples. All such pseudo data names themselves belong to the category CATEGORY OVERVIEW. (6) This assignment and the null data type are not listed in the printed version.

The printed category descriptions are boxed to make them more conspicuous. Headwords for navigation in the top line of the dictionary chapters indicate the current category at the start of a left-hand page or the close of a right-hand page.

```
EXPTL
(1)
(2) Data items in the EXPTL category record details about the
experimental work prior to the intensity measurements and
details about the absorption-correction technique employed.
(3) Example 1 - based on a paper by Steiner [Acta Cryst. (1996), C52, 2554-
2556].
(4)
_exptl_absorpt_coefficient_mu
_exptl_absorpt_correction_type
                                   psi-scan
_exptl_absorpt_process_details
        'North, Phillips & Mathews (1968)'
_exptl_absorpt_correction_T_min
 exptl absorpt correction T max
```

```
data exptl []
                               '_exptl_[]'
   _name
   category
                                category overview
(3)
                                null
   type
4
   loop_ _example
         _example_detail
  _exptl_absorpt_coefficient_mu
                                     0.962
  _exptl_absorpt_correction_type
                                     psi-scan
   exptl absorpt process details
               'North, Phillips & Mathews (1968)'
   _exptl_absorpt_correction_T_min
                                     0.929
   exptl_absorpt_correction_T_max
  Example 1 - based on a paper by Steiner [Acta
               Cryst. (1996), C52, 2554-2556].
    definition
2
    Data items in the EXPTL category record
     details about the experimental work prior
     to the intensity measurements and details
    about the absorption-correction technique
     employed.
```

#### Description of a simple physical quantity

A typical definition takes the \_name as headword ①, with data type and associated conditions in parentheses ranged right. The textual definition is given in a large clear type. Permitted numerical ranges are indicated (the open interval in the dictionary is explicitly indicated in print by  $\rightarrow \infty$ ) and the category is listed in square brackets at the end of the entry. By convention, physical units(7)(8) are specified in the textual description and not otherwise printed, although they are indicated explicitly in the dictionary.

```
()_diffrn_ambient_temperature
                                            (numb, su)(2)(3)
```

(4) The mean temperature in kelvins at which the intensities were measured.

The permitted range is  $0.0 \rightarrow \infty$ . (5)

[diffrn]

```
data diffrn_ambient_temperature
   name
                         diffrn ambient temperature
(6)
(2)
(3)
   _category
                                 diffrn
    type
                                 numb
   _type_conditions
                                  esd
    enumeration_range
                                  0.0:
    units
                                 ĸ
   units detail
                                  kelvin
4
    definition
     The mean temperature in kelvins at which the
     intensities were measured.
```

#### Description of a looped item with discrete enumerated values

Here, the permitted discrete values (8) are listed under the legend 'The data value must be one of the following'. Any annotations to the enumerated values (using enumeration detail) appear in a parallel column.

List membership is indicated by phrases such as 'Appears in list' (when the \_list attribute has the value 'yes') or 'May appear in list' (as here, where list is 'both')(4). A mandatory list element ( list mandatory appears and has the value 'yes') is indicated with the phrase '... as essential element of loop structure.' One or more items that identify the list ( list reference) are introduced by the word 'containing' (5)

Related items are listed with the relationship (the value of related function (7)) in parentheses, except where it is 'replace'. Then the entire entry is italicized to emphasize that an alternative data item is preferred.

```
(1) exptl crystal colour lustre
                                                     (char)(2)
(3) The enumeration list of standardized names developed for the
```

International Centre for Diffraction Data . .

May appear in list 4 containing \_exptl\_crystal\_id. 5 Related item: exptl crystal colour (6) (alternate). (7)

The data value must be one of the following:

(8)metallic

dull

clear

Diffraction Data ...

\_name '\_exptl\_crystal\_colour\_lustre' exptl crystal category (a) (a) (b) type char  $_{
m list}$ both list reference exptl crystal id' loop\_ \_enumeration metallic dull clear \_related\_item \_exptl\_crystal\_colour' related function alternate 3 definition The enumeration list of standardized names developed for the International Centre for

data exptl crystal colour lustre

(9) [exptl\_crystal]

## Layout of DDL2 dictionaries

### **Description of a category**

DDL2 dictionaries have explicit definitions of data categories. Category descriptions are boxed to make them conspicuous. Headwords for navigation in the top line of the dictionary chapters indicate the current category at the start of a left-hand page or the close of a right-hand page.

Category keys are listed, together with the category groups of which the current category is a member. Categories considered mandatory (\_category.mandatory\_code has a value of 'yes') are indicated by the phrase 'Mandatory category' in bold type at location (7).

```
(1)
                               EXPTL
(2)Data items in the EXPTL category record details about the
experimental work prior to the intensity measurements and
details about the absorption-correction technique employed.
Category group(s): inclusive group (3)
              exptl group
Category key(s): _exptl.entry_id 4
(5) Example 1 - based on laboratory records for Yb(S-C<sub>5</sub>H<sub>4</sub>N)<sub>2</sub>(THF)<sub>4</sub>
exptl.entry_id
                                       datablock1
exptl.absorpt_coefficient_mu
                                       1.22
_exptl.absorpt_correction_T_max
                                       0.896
exptl.absorpt_correction_T_min
                                       0.802
exptl.absorpt_correction_type
                                       integration
```

```
save exptl
② _category.description
   Data items in the EXPTL category record details
   about the experimental work prior to the ...
  _category.id
                               exptl
  category.mandatory code
                             exptl.entry id'
   category key.name
   loop
                              'inclusive group'
  _category_group.id
                              'exptl group'
   loop
  _category_examples.detail
  _category_examples.case
  _ _ _
  Example 1 - based on laboratory records for ...
  _exptl.entry id
                                   datablock1
  _exptl.absorpt_coefficient_mu
                                   1.22
   exptl.absorpt_correction_T_max
                                   0.896
   exptl.absorpt correction T min
                                   0.802
   exptl.absorpt correction type
                                   integration
    save_
```

#### Description of a simple physical quantity

A typical definition takes the \_item.name as headword, with data type and associated conditions in parentheses ranged right. Aliases to other data names are listed below the headword, with the name and version of the dictionary in which they are defined.

The textual definition is given in a large clear type. Permitted numerical ranges are indicated. DDL2 dictionaries distinguish closed intervals (where the boundary value appears as both \_item\_range.maximum (8) and \_item\_range.minimum (9) from open intervals. In print, closed intervals are enclosed in square brackets, open intervals in parentheses. The example is closed at zero, but open with an unbounded upper value.

Related items are listed with the relationship (the value of <u>\_item\_related.function\_code</u> ①) in parentheses. The category is listed in square brackets at the end of the entry.

By convention, physical units (3) are specified in the textual description and not otherwise printed, although indicated explicitly in the dictionary. No special marking indicates data items where \_item.mandatory\_code (4) is 'no' (see the citation.id example opposite for a different case).

```
①_diffrn.ambient_temp (float, su)②③ _diffrn_ambient_temperature④ (cif_core.dic⑤ 2.0.1⑥)
②The mean temperature in kelvins at which the intensities were measured.

The permitted range is [0.0, \infty)⑧②.

Related item: _diffrn.ambient_temp_esd⑩ (associated esd)①. ② [diffrn]
```

```
save diffrn.ambient temp
  item description.description
  The mean temperature in kelvins at which the
  intensities were measured.
                               '_diffrn.ambient_temp
  item.name
  _item.category_id
                                 diffrn
   item.mandatory code
  item aliases.alias name
                        '_diffrn_ambient_temperature
   item aliases.dictionary
                                 cif core.dic
                                 2.0.1
  item aliases.version
   loop_
   item range.maximum
                                       0.0
   item range.minimum
                                 0.0
                                       0.0
  item related.related name
                          ' diffrn.ambient temp esd'
   _item_related.function_code
                                 associated esd
   _item_type.code
                                 float
   item type conditions.code
                                 esd
                                 kelvins
   item units.code
   save
```

#### Description of an item with discrete enumerated values

The permitted discrete values (4) are listed under the legend 'The data value must be one of the following'. Annotations to the enumerated values (5) appear in a parallel column.

```
; The chiral configuration of the atom that is a chiral centre.
;

(1) _item.name '_chem_comp_chir.atom_config'
(6) _item.category_id __chem_comp_chir
_item.mandatory_code no
(2) _item_type.code ucode
loop_
(4) _item_enumeration.value
(5) _item_enumeration.detail

R 'absolute configuration R'
```

'absolute configuration S'

save\_\_chem\_comp\_chir.atom\_config
(3) item description.description

save\_

### Description of an identifier as a category key

Category keys have important roles in ensuring the integrity of the data structure in DDL2 dictionaries. They are mandatory elements, flagged by the marginal asterisk \* (1). In some cases, although the item is formally necessary, its value may be derived from context. This is indicated by assigning a value of 'implicit' to \_item.mandatory\_code. In such a case the asterisk appears in parentheses (\*).

Formally a single save frame may be used in a DDL2 dictionary to define all occurrences of the same identifier in different categories (indicated by the looping of \_item.name, \_item.category\_id and \_item.mandatory\_code). To make the printed dictionary easier to read, only the primary instance (8) is defined in a single listing. The other instances (indicated by \_item\_linked.child\_name (5)) are defined tersely in abbreviated listings within the relevant categories.

```
*102_citation.id
```

(code)(3)

\_citation\_id(cif\_core.dic 2.0.1)

(4) The value of citation.id must uniquely identify a record in the CITATION list. The \_citation.id 'primary' should be used to indicate the citation that the author(s) consider to be the most pertinent to the contents of the data block. Note that this item need not be a number; it can be any unique identifier.

The following item(s) have an equivalent role in their respective categories:

```
citation author.citation id(5),
_citation_editor.citation_id,
```

software.citation id.

(6) Examples: 'primary', '1', '2'.

(7) [citation]

```
save citation.id
(4) item description.description
; The value of _citation.id must uniquely identify a
  record in the CITATION list. The citation.id
  'primary' should be used to indicate the citation
  that the author(s) consider to be the most
 pertinent to the contents of the data block.
  Note that this item need not be a number: it can be
  any unique identifier.
   loop
   item.name
  __item.category_id
  _item.mandatory_code
    ' citation.id'
                                   citation
     _citation_author.citation_id' citation_author yes
     citation editor.citation id' citation editor yes
     software.citation id'
                                   software
                                                   yes
   _item_aliases.alias name
                               ' citation id'
   _item_aliases.dictionary
                                 cif core.dic
   item aliases.version
                                 2.0.1
   loop
   item linked.child name
   item_linked.parent name
                                   '_citation.id'
    '_citation_author.citation_id'
                                   citation.id'
     citation editor.citation id'
                                    _
'_citation.id'
    ' software.citation_id'
3 _item_type.code
                                 code
    loop
```

6 \_item\_examples.case save\_

'primary'

11

121