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Materials that have been used in Bragg crystal monochromators for EXAFS

studies are examined and compared. Current designs of single-crystal and multi-

crystal monochromators are described, and the trends affecting their future

development are discussed.

1. Introduction

Once X-rays have been produced, whether by a small

laboratory device such as a tube or plasma, or by a large

machine like a synchrotron or free-electron laser, they must be

processed by a set of optical components into a form suitable

for the desired experiment. Diffraction gratings, multilayers

and crystals perform the common yet critical task of selecting

X-rays of a particular energy. Such optical components are

monochromators. A monochromator is chosen according to

the range of X-ray energies E it can select, the bandwidth �E

about the selected energy, and the efficiency with which it

transmits X-rays of the selected energy and blocks X-rays of

all other energies. Monochromator designs for EXAFS must

furthermore maintain an accurate energy calibration and must

keep the exiting beam’s intensity, position and angle stable

while scanning over the X-ray energy. This distinguishes

EXAFS monochromators from those used for imaging or

macromolecular crystallography, which are normally carried

out at a fixed X-ray energy.

Bragg reflections from crystals are the most common way

to select X-ray energies above 5 keV, where they are highly

efficient. While multilayers provide a relative bandwidth

�E/E ’ 10� 2 in this range, crystals can achieve �E/E ’ 10� 4.

Some crystals can even select X-ray energies down to 1 keV,

where diffraction gratings become competitive. Crystals are

essentially three-dimensional diffraction gratings of atomic

scale, because the size of an atom is several ångströms,

comparable to an X-ray wavelength. They may be treated as

sets of planes of atoms separated by a uniform spacing d, with

each plane reflecting a very small fraction of the incident

X-ray wave. If the X-rays form a plane wave of wavelength �

making an angle � with the planes of atoms, the reflected

waves from all the planes of atoms interfere constructively and

hence yield a large total reflected intensity if Bragg’s law is

fulfilled:

2d sin � ¼ n�; ð1Þ

where n is a positive integer called the ‘order.’ (A small

refractive correction to � is neglected here.) Crystal mono-

chromators thus transmit integer multiples (‘harmonics’) of

the selected X-ray energy, and different methods are used to

suppress them, such as the detuning of the monochromator or
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the use of harmonic rejection mirrors. This is critical for X-ray

absorption spectroscopy beamlines.

2. Crystal types and symmetries

A crystal is classified according to its space group, which is

the set of rotations, reflections, inversions, translations and

combinations of these that transform the crystal structure into

itself. Every crystal structure belongs to exactly one of the 230

three-dimensional space groups gathered into one of fourteen

Bravais lattices. These in turn are classified under seven crystal

systems, listed as follows from most to least symmetric: cubic,

tetragonal, hexagonal, trigonal (rhombohedral), ortho-

rhombic, monoclinic and triclinic. The properties of the

individual crystal systems and space groups are provided in

International Tables for Crystallography Volume A (2016), but

a few of the most important ones will be reviewed here. A

thorough discussion of these concepts may also be found in

Ashcroft & Mermin (1976).

The scattering from a unit cell of a crystal is described by

Cullity & Stock (2001). Each set of planes within a crystal is

assigned a set of three Miller indices hkl that are inversely

proportional to the intercepts of the plane through the basis

vectors a, b and c. If the unit cell is hexagonal, as is usually the

case for trigonal as well as hexagonal crystals, a plane is

assigned four Miller–Bravais indices hkil, where i = � (h + k),

in order to clarify the equivalence of symmetry-related planes

about the c axis. The normal to the (hkl) plane lies along the

scattering vector Ghkl, which is always equal to the wavevector

of the diffracted beam minus that of the incident beam when

the Bragg condition in equation (1) is fulfilled. In order for a

set of planes to produce a Bragg reflection, their Miller or

Miller–Bravais indices must all be integers, and must also

satisfy relationships imposed by the symmetry operations of

the crystal’s space group. These emerge from the calculation

of the scattering amplitude, or ‘structure factor’ Fhkl of the unit

cell for scattering from the (hkl) planes. If the unit cell

contains N atoms, the structure factor neglecting temperature

corrections is

Fhkl ¼
XN

j¼1

fj Ghklð Þ exp 2�iGhkl � rj

� �
; ð2Þ

where rj ¼ xjaþ yjbþ zjc is the position of the jth atom

within the unit cell. Note that 0 � xj; yj; zj < 1 for all j. fj is the

scattering amplitude, or ‘atomic form factor,’ of the jth atom.

It depends on the detailed distribution of the electrons around

the jth atom’s nucleus. If all atoms in the crystal are identical,

then it is especially easy to see from this equation that some

planes (hkl) produce Bragg reflections while others do not.

For instance, if that crystal’s lattice is body-centred, it has

Bragg reflections only from planes for which h + k + l is even,

and if the lattice is face-centred, it has Bragg reflections only

from planes for which h, k and l are either all even or all odd.

Further conditions can be found in International Tables for

Crystallography, Volume A, in the ‘Positions’ part of the table

for the crystal’s space group. For example, three crystal

materials widely used as X-ray monochromators, namely

silicon, diamond and germanium, belong to the same face-

centred cubic space group Fd�3m and have their atoms at

Wyckoff positions 8a. The general and special conditions

together can be summarized as hkl all odd, or hkl all even and

h + k + l a multiple of 4.

The less symmetry a crystal’s space group has, the less likely

it becomes that one particular atomic plane of that crystal will

be symmetry-equivalent to any other. For example, in crystals

that form cubic lattices of the space group Fd�3m, the set of

symmetry-related atomic planes {hkl} may contain up to 48

members unless two or more of the Miller indices are equal.

On the other hand, in �-quartz, whose lattice is trigonal and

which can exist in either of two enantiomorphic space groups

P3121 or P3221, the set of symmetry-related atomic planes

{hkl} can contain no more than six members. A crystal lattice

of the centrosymmetric triclinic space group P�1, which

includes only inversion centres and translations along the basis

vectors a, b and c among its symmetry operations, would have

only the two planes (hkl) and ð �h �k�lÞ as members of {hkl}. In the

extreme example of a crystal of the triclinic space group P1,

every atomic plane is unique because such a crystal remains

invariant only under translations along its basis vectors a, b

and c. Table 3.2.3.2 in International Tables for Crystallography

Volume A lists the members of the sets of symmetry-

equivalent atomic planes {hkl} for the 32 crystallographic

point groups. For each of the 230 crystallographic space

groups, there is exactly one such point group. See Section

1.3.3.1 in International Tables for Crystallography Volume A

(2016) for details. The number of Bragg reflections within a

given range of X-ray energies that have distinct interplanar

spacings and structure factors therefore depends critically on

the degree of symmetry of the crystal’s space group.

3. Material properties of crystals

However, the suitability of a particular crystal for use as an

X-ray monochromator depends on much more than just its

space group. The crystal’s material properties also play an

important role.

First, the crystal must be able to withstand the X-ray photon

flux without suffering excessive damage during the time of the

experiment. Many crystals can be chosen for the collection

and analysis of X-ray fluorescence, which is of low intensity

and spread over a wide range of solid angles. On the other

hand, only a few crystals, particularly silicon and diamond, can

endure the high and concentrated X-ray flux generated by a

synchrotron source. This requirement in itself limits the

usefulness of crystals for selecting X-rays of energy below

about 2 keV, because the crystals that offer planes of suitably

large d-spacing tend to be composed of large organic mole-

cules (for example, acid phthalates) that degrade easily when

irradiated. Among the few exceptions are beryl, which is rare,

and YB66, an artificial, very complex cubic crystal with over

1600 atoms in each unit cell. Both of these materials were once

considered for use in monochromators at synchrotron beam-
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lines (Wong et al., 1999), but are rarely used there today for

reasons that will become clear in the following.

Second, although ideal crystals have been discussed in the

previous section, real crystals fall short of perfection in

different ways and to varying degrees depending on the

conditions in which they were grown, even if great care is

taken to make them chemically pure. Dislocations are very

common and can lead to stacking faults and grain boundaries,

which can broaden the energy resolution and alter the flux

diffracted by the crystal. At one extreme there is silicon, which

can be grown in large, highly pure, dislocation-free ingots by

the float-zone method. Diffraction from such large, perfect

crystals must be treated by dynamical diffraction theory, which

accounts for the mutual coupling between the incident and

diffracted waves within the crystal (Batterman & Cole, 1964).

Perfect crystal monochromators provide the minimum

possible bandpass. They also provide the highest diffraction

efficiency, but the divergence they can accept is very small

(�10 mrad) unless the Bragg angle deviates from 90� by less

than a few tenths of a degree. Perfect crystals are required

when the thermal and mechanical properties of a mono-

chromator must be spatially uniform and well characterized,

for example when subjected to the high power load of a

synchrotron beamline, or when elastically bent [e.g. PET,

Källne & Källne (1983); quartz, silicon and germanium,

Pattison et al. (1986)]. At the other extreme, many real crystals

can be analysed as mosaic structures composed of many small,

perfect crystal blocks that are slightly misaligned with respect

to one another and scatter independently. Zachariasen (1945)

provides detailed calculations of diffracted intensities from

such crystals. Mosaic crystals diffract less efficiently than

perfect crystals and their spatial properties are generally not

uniform, but this can be compensated by the mosaic crystals’

increased angular acceptance. Ice & Sparks (1990) showed

that a sagitally curved graphite mosaic crystal spectrometer

brought more flux to the detector than a perfect crystal while

maintaining a similar energy resolution. On the other hand,

the strong mosaicity in even the best synthetically grown

diamond crystals has limited their application as mono-

chromators of high-intensity synchrotron X-ray beams despite

diamond’s excellent thermal conductivity, which is discussed

below. Other materials lie between these two extremes. For

example, the best sapphire crystals now available show

variations in strain on the scale of tenths of millimetres

(Sergueev et al., 2011) and a significant concentration of

dislocations (Asadchikov et al., 2016), but these did not

prevent their use as high-resolution monochromators as long

as the incident beam was confined to a small region (�1 mm2)

of the crystal. Lithium niobate crystals grown by the usual

Czochralski method suffer from compositional gradients,

dislocations and subgrain boundaries; attempts to improve

them are ongoing (Sarker, 2016). Quartz in nature is well

known for its various types of twinning, but synthetically

grown quartz crystals can be grown to a high degree of

perfection.

Third, if a crystal is to operate under a high incident power

load, such as at a synchrotron insertion device beamline, it

must combine high thermal conductivity with low thermal

expansion so that the crystal can easily transfer heat to a

cooling system and resist cracking caused by thermal gradi-

ents. Often, though not always, these parameters improve if

the crystal is cooled by liquid nitrogen. The failure of YB66 to

become widely used at synchrotrons, despite its favourably

large d-spacings for 1–2 keV X-rays and its stability under

irradiation, is due to its very poor thermal conductivity of

0.02 W cm� 1 K� 1 at 300 K, which drops even further at lower

temperatures (Slack et al., 1971). The contrasting success of

silicon in monochromators exposed to high heat loads is due

to silicon’s combination of a zero in thermal expansion close to

125 K (Lyon et al., 1977) with a high, isotropic thermal

conductivity of 6.0 W cm� 1 K� 1 at that temperature. Since

the thermal conductivity of silicon is 2.5–4 times better

than that of germanium from 20 to 300 K (Glassbrenner &

Slack, 1964), silicon has entirely supplanted germanium in

synchrotron monochromators that receive X-ray beams from

insertion devices. Diamond’s thermal conductivity is over

10 W cm� 1 K� 1, specimen-dependent but even better than

that of silicon (Berman et al., 1975), but remains little used

because of the difficulty of growing single perfect crystals

larger than a few cubic millimetres, as well as its extreme

hardness. In crystals with non-cubic lattices, one may expect

the thermal expansion and conductivity to be dependent on

direction. A good example is the trigonal crystal quartz, whose

thermal properties differ along the a and c axes of its hexa-

gonal unit cell. Kosinski et al. (1992) provide thermal expan-

sion coefficients at 293 K of 13.55� 10� 6 and 7.43� 10� 6 K� 1

along the a and c axes, respectively. These are significantly

higher than the corresponding value for silicon, 2.56 �

10� 6 K� 1 at 295.5 K (Deslattes et al., 1980). Recommended

values of thermal conductivity for quartz at 300 K are quite

poor at 0.0621 and 0.104 W cm� 1 K� 1 along the a and c

axes, respectively; these improve somewhat to 0.279 and

0.54 W cm� 1 K� 1 at 80 K (Touloukian et al., 1970).

Fourth, the temperature dependence of the Bragg reflec-

tions of a crystal becomes important if the energy calibration

needs to be precise. It also helps determine the range of X-ray

energies that a crystal can diffract with reasonable efficiency.

Temperature affects the Bragg reflections in three ways. First,

thermal expansion changes the lattice parameters and there-

fore the d-spacing of the diffracting planes, altering the

parameters in Bragg’s law (equation 1). Second, the coordi-

nates of the atoms within the unit cell may change with

temperature. This does not occur in diamond, silicon or

germanium, but it has been observed in quartz (Kihara, 1990)

and it affects the calculation of the structure factor (equation

2). Finally, as temperature increases, the so-far neglected

thermal motion of the atoms of the crystal increases with it.

Crystals whose thermal properties are isotropic can be char-

acterized by their X-ray Debye temperatures (which may

differ from the Debye temperatures used in specific heat

calculations). A higher X-ray Debye temperature corresponds

to less thermally induced atomic motion at a given tempera-

ture and hence less decrease of the thermally averaged

structure factor with increasing scattering vector. Diamond,
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silicon and germanium at room temperature have Debye

temperatures of 1500–1880 K (Schoening & Vermeulen,

1969), 543 K and 290 K (Batterman & Chipman, 1962),

respectively. Crystals that are more complex may have ther-

mally induced vibrational amplitudes that depend strongly on

direction, as is the case in quartz (Kihara, 1990). Crystals

composed of more than one species of atom may have

different Debye temperatures for different atoms. For

example, sapphire (Al2O3) has an X-ray Debye temperature

of 890 K for its Al atoms and 995 K for its O atoms (Lucht et

al., 2003). Crystals with low thermally induced atomic motion

(high Debye temperatures) will more efficiently diffract

X-rays at scattering vectors with large magnitudes 2 sin(�)/�.

Fifth, a crystal must be hard enough to resist plastic

deformation, which would distort its lattice, but at the same

time be soft enough to be cut, ground and polished. The

hardness of a material can be characterized by several

procedures. The Mohs hardness scale is simple, testing the

ability of a material to be scratched by one of ten reference

minerals from talc (Mohs hardness 1) to diamond (Mohs

hardness 10). Other methods like the Knoop hardness test

measure the width and depth of a mark left in a material by an

indenter of standard shape subjected to a prescribed load.

A table of Bragg reflections of various crystals that have

been used to study the absorption edges of a wide range of

elements is printed in the X-Ray Data Booklet (Underwood,

2009). The values of 2d range from 1.624 Å for quartz (50�52)

to 26.632 Å for potassium acid phthalate (100). Table 1

provides the chemical formulas and lattice properties of a

selection of these crystals and of several other crystals

(diamond, lithium niobate, YB66) that have been used on

synchrotron beamlines. Table 2 provides the significant

material properties (hardness, thermal expansion and

conductivity, Debye temperature and method of manufacture)

of all the crystals in Table 1 except potassium acid phthalate,

for which data are not available. (It should be noted that

potassium acid phthalate decomposes at 568 K and is an irri-

tant. Crystals of this material are grown from slow evaporation

from aqueous solutions.) Table 2 makes it clear that only

diamond and sapphire could compete with silicon under high

heat load, for only they have comparably high thermal

conductivity and low thermal expansion, but they remain

little used because it remains difficult to manufacture pure,

dislocation-free crystals larger than a few mm3, and because

their extreme hardness makes them difficult to machine.

Most of the other crystals must be kept away from high heat

loads because of their poor thermal conductivity, particularly

YB66, which is the best suited for low-energy X-rays because

of its large unit cell, but also has the lowest thermal conduc-

tivity of all the crystals listed in addition to being extremely

hard.

4. Multi-crystal monochromators

4.1. Rocking curve and energy resolution for Bragg reflection

from a single crystal

Bragg’s law, given in equation (1), shows the particular

wavelength that a single crystal can select in first order (n = 1)

from a ray incident on the crystal at a specific grazing angle �.

However, because real beams have a finite divergence and

bandwidth, the effect of small deviations �� and �� from the

central angle �B and the central wavelength �B must be

included when assessing a monochromator’s suitability for a

particular X-ray source. This effect is shown by taking the

differential form of Bragg’s law when n = 1:

�B cot �B�� ¼ ��: ð3Þ
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Table 1
Chemical formulas, symmetry and unit-cell dimensions of crystals commonly used as X-ray monochromators and analysers in EXAFS studies.

Unit-cell dimensions are given with their uncertainties (in parentheses) and first non-significant digits (as subscripts) where available. Temperatures are also given
for the unit-cell dimensions where the sources provide them.

Material Chemical formula Crystal system Space group Unit-cell dimensions (room temperature)

Silicon Si cubic Fd�3m a = 5.431020511 (89) Å (NIST, 2018), consistent with other
sources at 300 K†

Germanium Ge cubic Fd�3m a = 5.658 Å at 300 K‡

Diamond C cubic Fd�3m a = 3.567 Å at 300 Kx
Quartz SiO2 trigonal P3121 or P3221} a = 4.9137 (8), c = 5.4047 (12) Å at 298 K (Kihara, 1990)
Sapphire Al2O3 trigonal R�3c a = 4.7590 (4), c = 12.99085 (22) Å at 287.35 K (Shvyd’ko &

Gerdau, 1999)
Lithium niobate LiNbO3 trigonal R3c a = 5.148, c = 13.863 Å at 293 K (Hsu et al., 1997)
Indium antimonide InSb cubic F �43m a = 6.479 Å at 300 K‖
Lithium fluoride LiF cubic Fm�3m a = 4.0293 Å#
Beryl 3BeO·Al2O3·6SiO2 hexagonal P6=mcc a = 9.21, c = 9.19 Å††
YB66 YB66 cubic Fm�3c a = 23.440 (6) Å (Richards & Kasper, 1969)
Topaz Al2(F,OH)2SiO4 orthorhombic Pbnm ‡‡ a = 4.6489 (24), b = 8.7935 (39), c = 8.3957 (39) Å at 298 K

(Komatsu et al., 2003)
Potassium acid phthalate CO2HC6H4CO2K orthorhombic P21abxx a = 6.466, b = 9.609, c = 13.857 Å (Okaya, 1965)

† http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html. ‡ http://www.ioffe.ru/SVA/NSM/Semicond/Ge/basic.html. x http://www.ioffe.ru/SVA/NSM/Semicond/Diamond/basic.html.

} �-Quartz exhibits two enantiomorphic forms, one in the space group P3121 and one in P3221, characterized by right-handed (31) and left-handed (32) screw axes. Confusingly, these

two enantiomorphs are named laevo- and dextro-quartz, respectively. See Donnay & Le Page (1978) for a detailed discussion of the pitfalls of the quartz structure. ‖ http://www.ioffe.

ru/SVA/NSM/Semicond/InSb/basic.html. # https://www.mindat.org/min-1749.html. †† https://www.mindat.org/min-819.html. ‡‡ Pbnm describes a non-standard setting of the

space group Pnma, No. 62 in International Tables for Crystallography Volume A (see Table 1.5.4.4 of Volume A). This non-standard setting results from the permutation of the three

axes: the a, b and c axes of Pnma become the c, a and b axes of Pbnm, respectively. xx Similarly, P21ab describes a non-standard setting of the space group Pca21, No. 29 in Volume A:

the a, b and c axes of P21ab become the c, a and b axes of Pca21, respectively.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/basic.html
http://www.ioffe.ru/SVA/NSM/Semicond/Ge/basic.html
http://www.ioffe.ru/SVA/NSM/Semicond/Diamond/basic.html
http://www.ioffe.ru/SVA/NSM/Semicond/InSb/basic.html
http://www.ioffe.ru/SVA/NSM/Semicond/InSb/basic.html
https://www.mindat.org/min-1749.html
https://www.mindat.org/min-819.html
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Thus a single crystal introduces a correlation between the

angle of incidence and the wavelength of the X-rays that it

selects.

Equation (3) shows that the bandwidth of the selected beam

is proportional to the incident beam’s divergence. Some

experiments, however, require a higher energy resolution than

this condition permits. A theoretical limit to the energy

resolution that can be achieved by a Bragg reflection from a

single crystal is set by the width ��rock of the curve of

diffracted intensity as a function of incidence angle � (a

‘rocking curve’) when a monochromatic plane wave is incident

on the crystal. The narrowest theoretically achievable energy

resolution is then �B cot �B ��rock. For a mosaic crystal,

Zachariasen (1945) provides formulas for theoretical rocking

curves under various approximate treatments of primary

extinction (power loss of the beam crossing a single block

caused by diffraction within it) and secondary extinction

(power loss of the beam inside the crystal caused by diffrac-

tion in the blocks crossed by the beam before it reaches a

particular block). The rocking curves of mosaic crystals are
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Table 2
Hardness, thermal expansion and conductivity, Debye temperature and preferred single-crystal manufacturing procedure for materials in Table 1.

Note: Details for potassium acid phthalate are not included in this table, as the relevant data are not available. Debye temperatures marked with an asterisk are
X-ray values, which can be substantially lower than values determined by specific heat or elastic constants. RT = room temperature.

Material

Hardness
Thermal expansion
coefficient (� 10� 6 K� 1)

Thermal conductivity
(W cm� 1 K� 1)

Debye temperature
(K)

Preferred
manufacturing
methodMohs Knoop (GPa)

Silicon 7 11.3† 2.33 (300 K), crosses zero

at 120 K, � 0.77 (80 K)
(Gibbons, 1958)

1.56 (300 K), 13.9 (80 K)

(Glassbrenner &
Slack, 1964)

543* (Batterman &

Chipman, 1962)

Floating zone

Germanium 6 7.65‡ 5.75 (300 K), 1.05 (80 K)
(Gibbons, 1958)

0.60 (300 K), 3.1 (80 K)
(Glassbrenner &
Slack, 1964)

290* (Batterman &
Chipman, 1962)

Czochralski

Diamond
(type I)

10 78–83 (Winchell,
1945)

1.07 (300 K), 0.023 (80 K)
(Stoupin & Shvyd’ko,
2011)

9.0 (300 K), 35.3 (80 K)
(Touloukian et al.,
1970)

1500–1880*
(Schoening &
Vermeulen, 1969)

High-pressure,
high-temperature,
chemical vapour
deposition

Quartz 7 6.5–8.8 (Winchell,

1945)

13.55 (a, 293 K),

7.43 (c, 293 K)
(Kosinski et al., 1992)

0.0621 (a, 300 K),

0.104 (c, 300 K),
0.279 (a, 80 K),
0.54 (c, 80 K)
(Touloukian et al.,
1970)

470 (Gray, 1957) Hydrothermal

(Note: piezoelectric)

Sapphire 9 16.7–21.6
(Winchell,
1945)

6.2 (a), 7.07 (c)
at T� 200 K,
~0 at T < 50 K
(Lucht et al., 2003)

0.46 (300 K), 9.6 (80 K),
~200 (30 K)
(Touloukian et al.,
1970)

890 (Al), 995 (O)
(Lucht et al., 2003)

Kyropoulos; for large
specimens, heat
exchanger method
(Schmid et al., 1994)

Lithium
niobatex

5 5.2–8.8, strongly
anisotropic

(Brown et al.,
1975)

14.1 (a), 4.1 (c) 0.042 at 300 K 1118 (Li), 299 (Nb),
643 (O)

(Etschmann &
Ishizawa, 2001)

Czochralski
(Note: piezoelectric)

Indium
antimonide

3.8 2.2 (Madelung
et al., 2002)

5.04 at 300 K, changes
sign at 55 K
(Gibbons, 1958)

0.167 at 300 K
(Busch & Steigmeier,
1961), ~1 at 55 K

(Kosarev et al., 1971)

203 (Madelung
et al., 2002)

Czochralski

Lithium
fluoride

4 1.00 (Combes
et al., 1951)

37 at 283 K (Combes
et al., 1951)

0.113 at 314 K
(Combes et al., 1951)

732 (Browder
et al., 1991)

Bridgman or
Kyropoulos
(Note: poor thermal
shock resistance)

Beryl 7.5–8.0 No data 2.6 (a), � 2.9 (c) at RT
(Morosin, 1972)

0.0435 (a), 0.0548 (c)
at RT (Horai, 1971)

799 (Robie, 1988) Hydrothermal

YB66 No data 25.7 (Schwetz
et al., 1972)

4.8 at 373 K
(Wong et al., 1999)

0.02 at T > 45 K
(Slack et al., 1971)

1300 (Oliver &
Brower, 1971)

Indirect-heating
float zone (Wong
et al., 1999)

Topaz 8 12 (Winchell,
1945)

6.4 (a), 5.5 (b), 8.1 (c)
at 298–1173 K
(Komatsu et al., 2003)

0.113 (mean) at RT
(Horai, 1971)

910 (Tennakoon
et al., 2018)

Natural (Note: cleaves
easily, handle with
care)

† http://www.ioffe.ru/SVA/NSM/Semicond/Si/mechanic.html. ‡ http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html. x Material properties are taken from https://www.

inradoptics.com/lithium-niobate unless otherwise noted.

http://www.ioffe.ru/SVA/NSM/Semicond/Si/mechanic.html
http://www.ioffe.ru/SVA/NSM/Semicond/Ge/mechanic.html
https://www.inradoptics.com/lithium-niobate
https://www.inradoptics.com/lithium-niobate


generally many times broader, have an integrated reflecting

power many times greater, and have a peak reflectivity far

lower than the rocking curves of perfect crystals. X-ray

diffraction from perfect crystals must be treated using dyna-

mical diffraction theory, which accounts for the coupling

between the incident and the diffracted waves inside the

crystal. The extinction of the beam within the crystal limits the

beam’s penetration depth even in the absence of absorption,

thus giving the rocking curve a nonzero width. This is given by

the so-called ‘Darwin width’ ��D, which is approximately

��D ¼
Pj j� FHF� H

�
�

�
�1=2

bj jð Þ
1=2

sin 2�B

ð4Þ

(Batterman & Cole, 1964). It is normally only a few arc-

seconds. The quantities in this equation are as follows:

P = 1 if the beam’s polarization is normal to the ‘diffraction

plane’ (s-polarization) and cos 2�B if it is parallel to the

‘diffraction plane’ (p-polarization). The diffraction plane is

spanned by u0, the unit vector along the incident beam, and

uH, the unit vector along the diffracted beam.

� = re�
2/(�V), where re is the classical electron radius and V

is the volume of the crystal’s unit cell.

FH and F� H are the structure factors of the Bragg

reflection along the reciprocal lattice vectors H and –H,

respectively.

b = (n · u0)/(n · uH), where n is a unit vector normal to the

crystal’s surface. b > 0 if the diffracted beam emerges from

the surface opposite the incident beam (‘Laue case’). b < 0 if

the diffracted beam emerges from the same surface struck by

the incident beam (‘Bragg case’).

Bragg reflections from perfect crystals for which |b| 6¼ 1 are

called ‘asymmetric’. Though uncommon in EXAFS applica-

tions, they are notable because they change the width of the

beam in the diffraction plane by a factor 1/|b| and the beam’s

divergence in the diffraction plane by a factor |b|.

The theoretical energy resolution can never be achieved

with a single crystal because no real incident beam is a

monochromatic plane wave. Also, a single crystal deflects the

beam by an angle 2�B, whereas it is generally more convenient,

especially at synchrotron beamlines where space is restricted,

to make the beam of selected X-rays parallel to the incident

beam from the X-ray source. However, configurations of two
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Figure 1
(a) Non-dispersive or (+� ) double-crystal monochromator. (b) Dispersive or (++) double-crystal monochromator. (c) DuMond diagram for the non-
dispersive monochromator in (a). (d) DuMond diagram for the dispersive monochromator in (b). For simplicity, both crystals are assumed here to be
identical and perfect, as is normally true at synchrotron beamlines.



crystals can give the diffracted X-ray beam a more desirable

set of properties, as will be shown below.

4.2. Double-crystal monochromators

In most cases, especially on synchrotron beamlines, it is

convenient to choose two perfect crystals of the same material

and oriented to the same Bragg reflection. Figs. 1(a) and 1(b)

show the two ways in which two identical crystals can be

arranged relative to each other when deflecting the beam in

the same plane. In Fig. 1(a), the two crystals are parallel. Here,

the beam deflection caused by the second crystal cancels out

that caused by the first, so that the exiting beam is parallel to

the entering beam. The crystals are then said to be in the (+� )

or non-dispersive configuration. In Fig. 1(b), the beam

deflection caused by the second crystal is in the same direction

as that caused by the first. The crystals are then said to be in

the (++) or dispersive configuration.

In the non-dispersive configuration, a ray leaving the first

crystal at a sharper angle strikes the second crystal at a sharper

angle too. On the other hand, in the dispersive configuration, a

ray leaving the first crystal at a sharper angle strikes the

second crystal at a shallower angle. This is reflected in the

‘DuMond diagrams’, the graphs of �� against �� in Figs. 1(c)

and 1(d) (DuMond, 1937). The first crystal is represented in

each DuMond diagram by a grey band that follows the curve

in equation (3). For small deviations �� from �B and �� from

�B, the band can be assumed to take the form of a line of slope

�B cot �B. The width of this grey band along the �� axis is the

width of the theoretical rocking curve, which for a perfect

crystal is ��D as shown in the figures. The second crystal is

represented by a similar grey band, but in different ways

depending on the configuration. In the non-dispersive

configuration described in Fig. 1(c), the second crystal’s grey

band is parallel to that of the first crystal. If both crystals are

exactly parallel, the two bands lie directly on top of each other,

but if the second crystal is deviated by an angle ��mis, the

second crystal’s grey band is shifted on the DuMond diagram

by that amount along the �� axis. On the other hand, in the

dispersive configuration described in Fig. 1(d), the second

crystal’s grey band is flipped horizontally. In both Fig. 1(c) and

Fig. 1(d), the set of wavelengths and angles transmitted by the

double-crystal monochromator is represented by the region

where the grey bands of the two crystals overlap. Two

important results emerge from this discussion:

Non-dispersive configuration: If the second crystal is rocked

while the first crystal is held stationary, the measured rocking

curve’s width will depend only on the Darwin widths of both

crystals, without any influence from the incident beam’s

divergence.

Dispersive configuration: The X-rays selected by this

monochromator will have a divergence equal to the crystals’

Darwin width and a correspondingly small bandwidth, inde-

pendent of the divergence and bandwidth of the incident

beam.

A more general treatment of double-crystal mono-

chromators, including those with non-identical crystals and

asymmetric Bragg reflections, may be found in Zachariasen

(1945).

4.3. Channel-cut and constant offset (‘fixed exit’) double-

crystal monochromators

The simplest double-crystal monochromator to manu-

facture and operate is the channel-cut monochromator. This is

simply a single crystal with a groove of parallel sides cut

through it, as shown in Fig. 2. The X-rays are diffracted first

from one of the inner surfaces of the groove and then from the

other in a non-dispersive configuration. The selected X-rays

exiting the channel-cut monochromator are always parallel to

the incident beam, being insensitive to both vibrations and

misalignments of the channel-cut monochromator in roll and

yaw. (See Fig. 2 for definitions.) However, while a channel-cut

monochromator can be easily rotated to scan the selected

photon energy of the exiting X-ray beam, the position of the

exiting beam will vary in the process, as demonstrated in

Figs. 2(c) and 2(d). This is a disadvantage if both the sample

and the beam are small. Moreover, caution is advisable when

using channel-cut monochromators, especially at synchrotron

beamlines, for the following reasons:

(i) Because the first and second diffracting inner surfaces

are rigidly fixed parallel to each other, harmonic wavelengths

that satisfy Bragg’s law in equation (1) at orders n > 1 will be

transmitted along with the desired fundamental wavelength

for which n = 1 as long as the higher-order reflections are

permitted by the crystal’s space group. This is not a serious

problem when the source is a tube, which emits most of its

X-ray intensity within the emission lines of the metal target.

However, if the source is a synchrotron bending magnet or

wiggler, the incident X-ray beam has a broad continuous
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Figure 2
Channel-cut monochromator. (a) View of channel-cut monochromator
along its length. (b) Definitions of the rotation angles. The most impor-
tant angle �, which sets the Bragg angle, is marked in black. The roll and
yaw, to which the channel-cut monochromator is much less sensitive, are
marked with dotted lines. (c) Channel-cut monochromator at a low Bragg
angle, which selects X-rays of high energy. (d) Channel-cut mono-
chromator at a high Bragg angle, which selects X-rays of low energy.
Notice the difference in the exiting beam’s position.



bandwidth, and if the source is a synchrotron undulator, the

incident X-ray beam has a spectrum consisting of a funda-

mental and harmonics determined by the undulator gap. In

both cases, harmonics will be transmitted, with deleterious

effects on the experimental background. This is not always a

serious problem because harmonic rejection mirrors can often

be used to reduce the intensity of the harmonics to an

acceptable level. However, if the beamline is too short to allow

the installation of additional mirrors, the harmonics may reach

all the way to the sample.

(ii) If the incident beam on the first diffracting surface of the

channel-cut monochromator has a broad bandwidth and high

power, as is usual at synchrotron beamlines, it will raise the

temperature of the area on that surface that it illuminates, thus

distorting the crystal lattice there. The X-rays selected by the

first surface, which carry only a small fraction of the original

incident power, will then no longer exactly satisfy Bragg’s law

on the second surface, which remains largely free of thermal

distortion. The photon intensity transmitted through the

channel-cut monochromator will thus fall considerably below

the ideal theoretical value.

(iii) The initial orientation of a channel-cut monochromator

in a beam of broad continuous bandwidth, such as would be

emitted by a synchrotron bending magnet or wiggler, can be

tricky because Bragg reflections other than the one desired

will always be excited, since the first diffracting surface will

scatter the X-rays into a Laue pattern according to their

wavelength. Different Bragg reflections cannot be distin-

guished by their deflection angle as with a single crystal

because all the diffracted beams will emerge parallel to the

incident beam. If the wrong Bragg reflection is chosen, the

energy calibration will be incorrect. A slit must be placed

downstream from the channel-cut monochromator to select

the right Bragg reflection. The incident beam’s cross section

should not be large enough to cause the desired Bragg

reflection’s spot to overlap with the spots produced by any

other Bragg reflections.

(iv) On a single crystal, polishing with fine abrasive is often

used to remove subsurface damage caused by sawing and

grinding to the desired shape. However, a conventional

polishing wheel cannot reach the inner surfaces of the

channel-cut crystal that diffract the X-rays. A finger coated

with abrasive would still not be able to polish these surfaces all

the way down to the bottom of the groove, and could intro-

duce unwanted surface texture because it is more difficult to

move the finger along the depth of the groove than along its

length. Therefore, unless the channel-cut monochromator is

thoroughly etched to remove the damaged layers near the

surfaces of the groove, the energy resolution may be signifi-

cantly broadened beyond that expected from a perfect crystal.

The need for an effective etchant that can reach the inner

surfaces of the groove limits the potential choice of materials.

Silicon and germanium crystals are amenable to being shaped

into channel-cut monochromators because they can be effec-

tively and isotropically etched by aqueous solutions of HF and

HNO3. Diamond crystals, on the other hand, are not amenable

because they resist all acids and because the inner surfaces of

the groove cannot be accessed by plasmas or reactive ions.

All of these problems can be solved by using a mono-

chromator composed of two separate crystals arranged non-

dispersively. Normally, for simplicity of operation, the two

crystals are mounted to a common rotation axis that sets the

Bragg angle of both simultaneously. The diffracting surface of

the first crystal is usually positioned on the common Bragg

rotation axis. This design simplifies the construction of the

cooling elements attached to the first crystal by minimizing the

crystal’s motion during energy scans. In the simplest design,

the second crystal may be kept fixed with respect to the first

crystal, except for fine angular adjustments that will be

explained below. In addition, linear motions may be added to

the second crystal to keep it in the beam over a wide energy

scan, as shown in Fig. 3(a). The linear motions can be chosen

to keep the exiting X-ray beam stationary as the Bragg angle is

varied, as shown in Figs. 3(b) and 3(c). Such a ‘fixed-exit’

monochromator is an advantage in EXAFS experiments that

require wide energy scans on a small sample.

Of course, a design composed of two separate crystals is

more complex to build and has more stringent mechanical

requirements than a channel-cut monochromator:

(i) Care must be taken to ensure that the roll angles of the

two crystals are parallel; otherwise, the exiting X-ray beam

will shift perpendicular to the diffraction plane during an

energy scan. Generally, one of the two crystals will be given a

motorized roll adjustment [see Fig. 3(a)], and the mutual roll

alignment of the two crystals will be checked using an auto-

collimator before the monochromator chamber is closed. The

final roll alignment is then adjusted in X-ray beam using the

motorized roll stage.

(ii) This design is sensitive to vibrations, which may affect

both the positions and the angles of both crystals separately,

thus causing the beam at the sample position to waver.

On the other hand, a monochromator composed of two

separate crystals offers several advantages over a channel-cut

monochromator:
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Figure 3
Fixed-exit monochromator. (a) Definitions of the angular and linear
motions that are necessary to maintain the monochromator’s perfor-
mance. The subscript ‘2’ means that these motions are applied to the
second crystal only. (b) Fixed-exit monochromator at a low Bragg angle
for selection of X-rays of high energy. (c) Fixed-exit monochromator at a
high Bragg angle for selection of X-rays of low energy. Notice that the
exiting beam’s position is now independent of the X-ray energy selected.



(i) The second crystal can be rotated independently of the

first. Generally, the second crystal is provided with a fine

piezoelectric angular stage for precise adjustment of its Bragg

angle relative to the first crystal, as in Fig. 3(a). By setting the

second crystal slightly away from exact parallelism with the

first crystal (‘detuning’), a user can reduce the transmitted

harmonics while maintaining high intensity at the fundamental

wavelength, taking advantage of the fact that higher-order

reflections in perfect crystals generally have much smaller

rocking-curve widths than the first-order reflection. In the

same way, the second crystal’s angle can be adjusted so that

the X-rays selected by a thermally distorted first crystal fulfil

Bragg’s law on the second crystal. Thus the exiting beam can

be maintained at a high photon flux. Some double-crystal

monochromators, especially those at older or smaller

synchrotrons where the electron beam current decays over

time, maintain a steady harmonic level by adjusting this fine

angular rotation through a feedback loop in which the exiting

beam’s intensity is the signal.

(ii) Each crystal can be individually polished on a conven-

tional wheel to remove subsurface damage caused by

machining. In this way, the highest possible energy resolution

can be obtained.

(iii) The different d-spacing between the first and the

second crystals due to the different heat loads that they cope

with, especially in wiggler sources, can be accommodated by

slightly changing the incident angle of the second crystal with

respect to the first.

4.4. The fixed-exit dispersive four-bounce monochromator

Both the channel-cut and the fixed-exit monochromator are

non-dispersive; therefore, the bandwidth of the exiting beam

increases with the divergence of the incident beam. Because

every real beam has some divergence, they never achieve

the highest possible energy resolution. A dispersive mono-

chromator can achieve this goal, but if built with only two

crystals, it cannot keep the exiting beam’s position fixed while

its energy setting is scanned. Furthermore, if the incident

beam is spread over a divergence much larger than the

reflection’s Darwin width, which for perfect crystals is gener-

ally only a few arcseconds, one can predict from the DuMond

diagram in Fig. 1(d) that a dispersive monochromator will

select only a tiny fraction of the incident intensity. Thus, high-

resolution dispersive monochromators constructed from

perfect crystals had low output when used with X-rays

generated by X-ray tubes, which provide only low brightness

over a wide angle. However, as soon as synchrotron X-ray

sources began providing vastly increased intensity within

much better collimated beams, Beaumont & Hart (1974)

tested several dispersive monochromator designs that

included more than two Bragg reflections. The simplest of

these, and the only one that allows fixed exit, is a mono-

chromator of four consecutive Bragg reflections in the

(+� � +) arrangement shown in Fig. 4. This monochromator

offers other advantages over double-crystal designs as well:

variations in the source’s angular position cause the beam on

the sample to vary only in intensity but not in position, and the

increased number of Bragg reflections improves the energy

resolution by suppressing its tails.

Even this early work recognized the four-bounce (+� � +)

monochromator’s potential in EXAFS applications. However,

the full development of a true energy-scanning perfect-crystal

monochromator based on this design has taken many years,

chiefly because proper scanning requires the first and second

crystal pairs to be mounted on rotation axes that are stable,

controllable and mutually synchronized, all within a few tenths

of a microradian, in order to keep all crystals on the Bragg

condition throughout. The important milestones are described

by the references cited in Hayama et al. (2018), which describe

earlier scanning monochromators installed on bending-

magnet beamlines at BESSY II, NSLS, HASYLAB and LNLS

in the 1980s and 1990s. The article itself demonstrates a

successful (+� � +) scanning silicon (111) monochromator at

beamline I20-scanning of the Diamond Light Source. The

monochromator is able to maintain high output intensity

without any external feedback or readjustment from 4 keV to

20 keV. The earlier scanning monochromators required only

water cooling for the bending-magnet radiation, but the

Diamond I20-scanning monochromator, being installed on a

wiggler beamline that generates X-rays of much higher power

spread over an equally large area, requires more challenging

cryocooling with liquid nitrogen in order to keep the thermal

distortion within acceptable levels.

4.5. Glitches

In wide energy scans taken by rotating the crystals of an

X-ray monochromator, sharp dips in intensity will appear in

the exiting beam when X-rays of certain specific energies are

selected, as demonstrated in Fig. 5. These dips, called ‘glitches,’

are caused by the simultaneous excitation of Bragg reflections

other than the principal one at the selected X-ray energy.

Their positions in the energy scan depend on the incident

beam’s azimuthal angle, which is defined as the angle between

the projection of the incident beam onto the main diffracting

planes and a given reference direction parallel to the same

planes. Therefore, although glitches cannot be avoided

entirely over long energy scanning ranges, they can be kept

away from certain especially desirable X-ray energies by

adjusting the azimuthal angle, as done by Tang et al. (2015).
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Figure 4
Four-bounce (+� � +) monochromator. (a) Low Bragg angle for selection
of X-rays of higher energy. (b) High Bragg angle for selection of X-rays of
lower energy.



The analysis performed by Rek et al. (1984) and put into an

accessible software package by Bowron (2012) can assist this

part of the monochromator design. Libraries of glitches on

specific perfect crystal monochromators, such as that provided

by the Stanford Synchrotron Radiation Lightsource (1999),

are publicly available.

The presence of glitches in the incident beam is nowadays

not a problem in the majority of X-ray absorption spectro-

scopy (XAS) experiments when detectors with linear response

are used and the sample is homogeneous, as they allow the

cancellation of the glitches by normalizing with the incident

intensity of the radiation.

However, there are some cases where, even when highly

linear detectors are used, the presence of glitches in the inci-

dent beam affects the quality of the XAS data collected. This

is the case when XAS measurements are taken on dilute

solutions, whose weak X-ray fluorescence must be measured

with a detector of large solid angle. In those cases, the non-

fluorescent coherent and Compton scattering of the X-rays by

the matrix of the sample adds a background that is super-

imposed on the collected sample fluorescence and has a

differential scattering cross section dependent on the X-ray

polarization. At synchrotron beamlines, the X-ray polarization

is largely (though not completely) linearly horizontal. By

placing the fluorescence detector so that it views the sample

along the X-ray polarization vector, the non-fluorescent

scattering is minimized, but because the detector has a finite

solid angle, it cannot be completely removed. Moreover,

evidently anything that alters the polarization state of the

X-ray beam on the sample must also alter the spatial distri-

bution of the collected non-fluorescent scattering. Sutter et al.

(2016) found that indeed the appearance of a glitch changes

not only the intensity but also the polarization of the X-ray

beam. Studying the four-bounce silicon (111) monochromator

at the Diamond Light Source EXAFS beamline I20-scanning,

they found that the X-ray polarization may be rotated within a

glitch by as much as 4.3�, in agreement with multiple-beam

dynamical diffraction calculations. This makes the usual

normalization of the fluorescence yield by the incident beam

intensity increasingly ineffective as the sample grows more

dilute. Improved normalization procedures that account for

the polarization change remain to be developed.

5. Future developments

5.1. Vertical versus horizontal deflection

Crystal monochromators for X-rays at synchrotron beam-

lines are generally built to deflect the X-ray beam vertically.

This is not a simple matter of taste, but is justified by the way

modern synchrotrons operate. In current storage rings, the

electron beam width and divergence are generally some 20–30

times larger in the horizontal plane than in the vertical plane.

Standard double-crystal monochromators therefore transfer a

narrow range of X-ray energies and thus achieve higher

energy resolution if they deflect vertically, as can be seen from

equation (3). For the same reason, the dispersive fixed-exit

four-bounce monochromator selects a larger fraction of the

incident X-ray intensity if it deflects vertically. The insertion of

a collimating mirror upstream from the monochromator does

not negate this advantage of vertical deflection. If the mirror is

to collimate the beam horizontally, it must be longer in order

to accept the greater horizontal divergence, and a larger

residual divergence remains in the beam exiting the mirror

because of the electron beam’s greater horizontal width. All

this will change with the forthcoming upgrade of many of the

world’s current synchrotron sources to diffraction-limited

storage rings, in which the horizontal width and divergence of

the electron beam will be greatly reduced so that they match

the vertical width and divergence. Horizontally deflecting

monochromators will then, in theory, perform as well as

vertically deflecting ones, or even better because they can be
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Figure 5
Sample of glitches measured in exiting beam from the Diamond Light Source I20-scanning silicon (111) four-bounce monochromator described by
Hayama et al. (2018) in a typical energy scan. On the left is a plot of X-ray energies and azimuthal angles at which the labelled Bragg reflections can be
excited simultaneously with the main 111 reflection (Bowron, 2012). On the right is a plot showing the measured glitches as a function of the selected
X-ray energy. d4 is a diode detector located between the first and second pair of bounces. d5 is a diode detector just downstream from the last bounce.
The solid circles connected to the glitches with dotted horizontal lines indicate the estimated azimuthal misorientation of the crystal that produced the
glitch. An azimuthal angle of zero indicates that the incident beam lies in the plane of the [111] and ½11�2� directions.



designed with greater stability against vibrations. Nano-

focusing synchrotron X-ray beamlines, such as the Hard X-ray

Nanoprobe I14 at Diamond Light Source, the Nanodiffraction

beamline ID01 at the ESRF (Leake et al., 2019), the X-ray

Nanoprobe beamline 23A at the Taiwan Photon Source (Yin

et al., 2016) and the Sub-micron Resolution X-ray Spectro-

scopy beamline at NSLS-II (De Andrade et al., 2011) have

already applied horizontally deflecting double-crystal mono-

chromators for their greater stability. However, the X-ray

beams will still be mainly polarized in the horizontal direction,

which for a horizontally deflecting Bragg reflection is

p-polarization. The polarization factor P in equation (4) thus

reduces the Darwin width of the Bragg reflection by a factor of

cos 2�B, and it also reduces the peak intensity of the rocking

curve when the crystal is absorbing. Horizontally deflecting

monochromators therefore will fail to transmit significant

X-ray intensity if the Bragg angle is close to 45�.

The simultaneous need for cryogenic cooling, low

mechanical strain in the crystals and high vibrational stability

continues to challenge the achievement of optimal perfor-

mance, especially on wiggler beamlines that generate high

power densities over a wide area of the crystals. Crystal

mounts must account for the different thermal contractions of

juxtaposed materials during cooling and warming in order to

avoid warping the crystal. Indium foils are often sandwiched

between the crystals and their heat exchangers because they

will deform plastically to fill gaps when pressure is applied and

hence ensure a good thermal contact, but the effects of

different loads and foil thickness on the thermal transfer

efficiency and the mechanical strain of the crystal are impre-

cisely known. Bubbles or turbulent flow in the cooling medium

can cause the crystals to vibrate and thus shift the beam

position relative to the sample. Work on these issues is

ongoing.

Acknowledgements

The author thanks Sofı́a Dı́az-Moreno for critical reading of

the manuscript.

References

Asadchikov, V. E., Butashin, A. V., Buzmakov, A. V., Deryabin, A. N.,
Kanevsky, V. M., Prokhorov, I. A., Roshchin, B. S., Volkov, Yu. O.,
Zolotov, D. A., Jafari, A., Alexeev, P., Cecilia, A., Baumbach, T.,
Bessas, D., Danilewsky, A. N., Sergueev, I., Wille, H.-C. &
Hermann, R. P. (2016). Cryst. Res. Technol. 51, 290–298.

Ashcroft, N. W. & Mermin, N. D. (1976). Solid State Physics. Phila-
delphia: W. B. Saunders Company.

Batterman, B. W. & Chipman, D. R. (1962). Phys. Rev. 127, 690–
693.

Batterman, B. W. & Cole, H. (1964). Rev. Mod. Phys. 36, 681–717.
Beaumont, J. H. & Hart, M. (1974). J. Phys. E Sci. Instrum. 7, 823–

829.
Berman, R., Hudson, P. R. W. & Martinez, M. (1975). J. Phys. C Solid

State Phys. 8, L430–L434.
Bowron, D. T. (2012). Monogli. ISIS Neutron and Muon Source,

Rutherford Appleton Laboratory, Didcot, UK.

Browder, J. S., Ballard, S. S. & Klocek, P. (1991). Physical property
comparisons of infrared optical materials. In Handbook of Infrared
Optical Materials, edited by P. Klocek, p. 179. New York: Marcel
Dekker.

Brown, H., Ballman, A. A. & Chin, G. Y. (1975). J. Mater. Sci. 10,
1157–1160.

Busch, G. & Steigmeier, E. F. (1961). Helv. Phys. Acta, 34, 1–28.
Combes, L. S., Ballard, S. S. & McCarthy, K. A. (1951). J. Opt. Soc.

Am. 41, 215–222.
Cullity, B. D. & Stock, S. R. (2001). Elements of X-ray Diffraction, 3rd

ed., Sections 4-4 to 4-6. New Jersey: Prentice Hall.
De Andrade, V., Thieme, J., Chubar, O. & Idir, M. (2011). Proc. SPIE,

8141, 81410L.
Deslattes, R. D., Kessler, E. G., Sauder, W. C. & Henins, A. (1980).

Ann. Phys. 129, 378–434.
Donnay, J. D. H. & Le Page, Y. (1978). Acta Cryst. A34, 584–594.
DuMond, J. W. M. (1937). Phys. Rev. 52, 872–883.
Etschmann, B. & Ishizawa, N. (2001). Powder Diffr. 16, 81–85.
Gibbons, D. F. (1958). Phys. Rev. 112, 136–140.
Glassbrenner, C. J. & Slack, G. A. (1964). Phys. Rev. 134, A1058–

A1069.
Gray, D. E. (1957). American Institute of Physics Handbook. New

York: McGraw-Hill.
Hayama, S., Duller, G., Sutter, J. P., Amboage, M., Boada, R.,

Freeman, A., Keenan, L., Nutter, B., Cahill, L., Leicester, P., Kemp,
B., Rubies, N. & Diaz-Moreno, S. (2018). J. Synchrotron Rad. 25,
1556–1564.

Horai, K. (1971). J. Geophys. Res. 76, 1278–1308.
Hsu, R., Maslen, E. N., du Boulay, D. & Ishizawa, N. (1997). Acta

Cryst. B53, 420–428.
Ice, G. E. & Sparks, C. J. (1990). Nucl. Instrum. Methods Phys. Res. A,

291, 110–116.
International Tables for Crystallography (2016). Volume A, Space-

Group Symmetry, 6th ed., edited by M. I. Aroyo. Chichester: Wiley.
Källne, E. & Källne, J. (1983). Phys. Scr. T3, 185–190.
Kihara, K. (1990). Eur. J. Mineral. 2, 63–77.
Komatsu, K., Kuribayashi, T. & Kudoh, Y. (2003). J. Mineral. Petro-

logical Sci. 98, 167–180.
Kosarev, V. V., Tamarin, P. V. & Shalyt, S. S. (1971). Phys. Status Solidi

B, 44, 525–534.
Kosinski, J. A., Gualtieri, J. G. & Ballato, A. (1992). IEEE Trans.

Ultrason. Ferroelect. Freq. Contr. 39, 502–507.
Leake, S. J., Chahine, G. A., Djazouli, H., Zhou, T., Richter, C.,

Hilhorst, J., Petit, L., Richard, M.-I., Morawe, C., Barrett, R.,
Zhang, L., Homs-Regojo, R. A., Favre-Nicolin, V., Boesecke, P. &
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