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Solutions to the EXAFS equation allow the determination of the structural

parameters R, N and �2 from EXAFS data, provided that the scattering phase

shifts, amplitudes and mean-free path terms are known. Even in the simplest

form, the oscillatory nature of the EXAFS equation makes it intrinsically non-

linear in the structural parameters, so that nonlinear least-squares methods are

needed to find the most likely set of values for the structural parameters to best

fit the EXAFS data. Such analysis methods have a substantial literature, are

used in a broad range of scientific fields and have been demonstrated to lead to

robust results for EXAFS analysis problems. In addition to finding the best-fit

values, the methods generally give reliable estimates for the uncertainty in each

of the variable parameters, taking into account the correlations between para-

meters. Still, the use of these methods requires some care, including legitimate

concerns over uniqueness and the possibility of finding ‘false minima’: solutions

which match the data well but with parameter values that are not the correct

solution. In this chapter, an overview of the practical application of these

methods to EXAFS will be provided.

1. Nonlinearity of the EXAFS equation

Extended X-ray absorption fine structure (EXAFS) is an

oscillatory function of photoelectron wavenumber k and

interatomic distance R, with complex scattering factors that

also depend on both k and R, as can be seen in a simple form

of the EXAFS equation,

�ðkÞ ¼
P

i

NifiðkÞ exp½� 2Ri=�ðkÞ� expð� 2k2Þ�2
i

kR2
i

� sin½2kRi þ �iðkÞ�; ð1Þ

where the summation is over shells of atomic neighbours or,

more generally, scattering paths of the emitted photoelectron.

Even when considering only a single scattering path or nearest

neighbour shell, the EXAFS function is obviously not linear in

k or any simple power of k. In addition, each of f(k), �(k) and

�(k) has a strong and nonlinear dependence on k. Having

multiple terms in the summation will give overlapping

contributions for all but the simplest of spectra, making any

attempt to linearize the EXAFS equation impossible. Thus, in

order to extract the structural parameters R, N and �2 from

EXAFS data in general, nonlinear analysis methods are

required. The inherent interdependence and correlation of the

structural parameters N, R and �2 does complicate the analysis

and can potentially lead to ambiguities when trying to find

optimal parameter values from an EXAFS spectrum. Fortu-

nately, a good deal of mathematical work has been performed

to help find the best solutions to nonlinear fitting problems. In

addition, knowledge about the nature of the spectra and our

understanding of the structures of real solids and molecules

can help avoid some of the pitfalls associated with data fitting.
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That is, rather than being afraid of this confusion, ‘no matter

how thick’ (Dylan, 1989), we can rely on nonlinear data-

analysis methods that are well understood from a statistical

framework, with robust and efficient algorithms that have

been developed over the past several decades.

2. Data fitting for EXAFS

General data-fitting analysis starts with a parameterized

model for a measured signal and seeks to find optimal values

for these parameters. The most common and statistically

justified way to express ‘optimal’ is to minimize the sum of

squares of the difference between a parameterized model y(x)

and measured data z with N different samples,

�2 ¼
PN

j¼1

yjðxÞ � zj

"j

� �2

; ð2Þ

where x is a particular set of varying parameters and " is the

estimated uncertainty in the data, all of which have N obser-

vations.1

Equation (2) describes data modelling in general, and there

are several choices that must be made for each term in

equation (2) for the particular case of analyzing EXAFS data.

Briefly, we need to decide how to represent the data and

model [such as deciding whether to fit �(k), the Fourier-

transformed �(R) or something else], how many data points

there are in that data form and what the uncertainty in that

form of the data is.

While the model for the data will derive from the EXAFS

equation, we have a choice of how to represent the data. As

discussed elsewhere in this volume, EXAFS data are routinely

transformed from X-ray energy E to wavenumber k, Fourier-

transformed to R-space, and sometimes Fourier-filtered back

from R-space to k-space using a limited R range. In principle,

EXAFS data could be modelled in any of these spaces. In

practice, EXAFS is limited in its useful R range, and the

number of scattering paths grows exponentially with R

(Zabinsky et al., 1995). Therefore, when building a model

using the EXAFS equation, we generally know how far in R

that model extends. Using unfiltered k-space or E-space data

gives no guarantee that the data are restricted to the same

extent as the model. Fitting in R-space or filtered k-space is

usually preferred as it allows us to select both the k and R

range for the data being modelled and to filter out the parts of

the signal that we do not model.

Because the Fourier transform is complex, the data in

R-space and filtered k-space can be separated into pairs of real

and imaginary components or magnitude and phase compo-

nents. Some EXAFS analysis procedures (such as the log-ratio

method) exploit this to separately analyze the magnitude and

phase components of the data, recognizing that the structural

parameters in equation (1) mainly affect either the magnitude

(N, �2) or the phase (R). This separation is not complete

(notably, the magnitude depends on R) and cannot disen-

tangle contributions from multiple paths or shells, but does

mean that the correlation between R and N will be much

smaller that the correlation between �2 and N.

Modern analysis are based on fitting EXAFS to models

using first-principles calculations of EXAFS from computer

codes such FEFF (Zabinsky et al., 1995; Kas et al., 2024),

GNXAS (Filipponi et al., 1995; Filipponi, Di Cicco et al., 2024;

Filipponi, Natoli et al., 2024) or EXCURVE (Binsted &

Hasnain, 1996; Feiters et al., 2024). With these, there is no need

to separately analyze the magnitude and phase terms or to

distinguish single- and multiple-scattering paths. These tools

calculate �(k), including the R dependence of f(k) and �(k),

and can include more complex disorder terms that mix

amplitude and phase terms. By calculating �(k) from a model

structure or a set of scattering paths, one then can transform

the model and data �(k) in the same way either to R-space or

filtered k-space for evaluation and fitting. When using such

calculations for data modelling, there is little distinction

between using filtered k-space and R-space, as both explicitly

select a finite k and R range of the data and model to fit.

Indeed, one can also use wavelet transforms for EXAFS

analysis (Muñoz et al., 2003; Funke et al., 2005; Timoshenko &

Kuzmin, 2009), which mix k-space and R-space. Of course,

whether the data is represented in k-space, R-space, back-

transformed k-space or ‘wavelet-transform space’, the uncer-

tainty " in these data for equation (2) needs to be in the same

space as the data, which we will return to below.

The choice of different data spaces to use in the analysis

requires us to carefully consider what the value of N should

be in equation (2). While many discussions of data-analysis

methods implicitly assume that all measurements are inde-

pendent of one another, we should not necessarily make that

assumption here. For one thing, the �(k) data to be analyzed

with the EXAFS equation have already been extracted from

the raw signals measuring X-ray absorption, so some inter-

polation or resampling of the raw data will already have

happened. Considering that the energy resolution of EXAFS

measurements are typically in the 1 eV range, it is apparent

that sampling �(E) in 1 meV steps may allow a precise energy

calibration but will not give 1000 times more independent

measurements of near-neighbour distance compared with data

sampled in 1 eV steps. In addition, while the raw signals for

�(E) may independently measure the X-ray absorption by the

sample, they do not necessarily independently measure the

local structure: �(E) below the absorption edge is not sensi-

tive to near-neighbour distance. The number of points to be

use in equation (2) should account for the actual number of

independent points in the EXAFS spectrum to be modelled.

The Fourier transforms used for EXAFS (see Bunker, 2024)

typically pad the �(k) data with zeros well past 50 Å� 1 or even

100 Å� 1, so that the �(R) from the Fourier transform is very

finely spaced in R (say, at 0.03 Å) with many more data points

than would be present in the Fourier tranform of the

unpadded data. This padding smooths the �(R), but it also

greatly oversamples the measured data. Explicitly stating the k

and R ranges for the actual data being modelled clarifies the

information content of the data and the number of parameters
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1 Note that the �2 statistic is not the EXAFS �! (Bevington & Robinson, 2002).



that can be independently extracted from it. The degree of

freedom or the number of independent points is given by

(Shannon, 1949; Stern, 1993)

Nindep ’
2�k�R

�
þ 1: ð3Þ

That is, the finite k and R range of the data each limit how

many parameters can be reliably determined from an EXAFS

spectrum. It is important to recognize that this limitation is not

because the data have been Fourier-transformed, but rather is

intrinsic to the nature of any oscillatory signal with limited

extent. Because the measured EXAFS signal rarely persists

above typical noise levels past 20 Å� 1 or past 10 Å, the

number of available parameters in an EXAFS spectrum is

relatively small. It is also important to recall that the Fourier

transform gives a complex quantity and both real and

imaginary (or magnitude and phase) must be considered, even

though many EXAFS works only present the magnitude for

�(R).

This discussion may suggest that zero-padding in the

Fourier transform should be avoided or limited. Although it

does oversample the EXAFS signal, zero-padding of the

Fourier transform conveniently smooths the resulting �(R),

which can avoid problems of numerical stability during the fit.

Instead, we can rescale the sum in equation (2) to be

�2 ¼
Nindep

N

PN

j¼1

yjðxÞ � zj

"j

� �2

; ð4Þ

which allows the use of finely spaced �(R) for stability but

does not overcount the number of independent samples.

The parameters x used in the EXAFS model are tradi-

tionally the near-neighbour distance R, the coordination

number N, the mean-square displacement �2 and the energy

origin E0 that defines k = 0 (see Newville, 2024), with the

scattering amplitude f(k), phase shift �(k) and mean-free path

�(k) assumed to be known for each path. For analyses with

many scattering paths (either shells of different atom types or

distances or multiple-scattering paths), the number of para-

meters that might be determined could easily grow to exceed

Nindep. For highly disordered systems using �2 to represent

disorder may not be sufficient, and other terms such as higher-

order cumulants (Bunker, 1983) may be needed to para-

meterize the contribution from even a single path.

With even a modest number of shells or scattering paths,

the limit of Nindep variables becomes critically important in

EXAFS analysis. To handle this limit of extractable informa-

tion, it important to be able to reduce the number of

completely independent variables. For example, one may

simply assert that some values are known. It is often (but not

always, especially when using multiple theoretical calcula-

tions) the case that the E0 parameters for multiple paths can

be set to the same value. In order to limit the number of

independently varying values of R and N, one can often use

knowledge or assumptions about the structure or chemical

environment, such as a known crystal structure for the system,

or the valence state determined by XANES and bond valence

theory (Brown & Altermatt, 1985). More generally, one may

write the parameters in the EXAFS equation as mathematical

expressions of a set of generalized variables (Newville, 2001),

and therefore place complex constraints between the physical

parameters, and limit the number of independent variables

used in the fit. In a practical analysis, it can also be helpful to

place upper and lower bounds on each of the variables (James

& Roos, 1975; Newville, 2013) so as to prevent nonphysical

or absurd values, such as requiring that all values for �2 be

positive.

3. Nonlinear data-fitting methods

There are several iterative algorithms that find parameter

values by minimizing �2 for nonlinear problems. For data-

fitting problems it is helpful to select a method that considers

not only the value of �2 itself, but also the full residual array,

the scaled difference between the model and the data. Many

such methods can also use the derivatives of this residual with

respect to the variables in the fit, which can lead to more

efficient and stable solutions.

One of the most commonly used algorithms for general-

purpose curve-fitting, which is heavily used in EXAFS

analysis, is the Levenberg–Marquardt method (Levenberg,

1944; Marquardt, 1963), which dynamically adjusts the

importance of the Jacobian matrix (the first partial derivative

of the residual with respect to the variables x, which gives a

‘steepest-descent’ approach to a solution) and the Hessian

matrix (the second partial derivative of the residual with

respect to x, which gives the curvature of the parameter space

near the solution). This combination gives an efficient and

robust method and has a few convenient features notable for

EXAFS analysis. Firstly, analytic derivatives of the residual

array with respect to the variables are not needed, and the

relative scaling of the variables and the derivatives with

respect to them are dynamically adjusted. Secondly, the

evaluation of these partial derivatives near the best-fit solution

can be easily converted to the covariance matrix, which gives

both the uncertainties in the variables and the correlations

between pairs of variables (Bevington & Robinson, 2002).

One popular implementation of the Levenberg–Marquardt

method is given in the MINPACK code (Moré et al., 1980),

which is used in many popular programming languages and

environments.

Like most other optimization methods, the Levenberg–

Marquardt algorithm finds a local solution for parameter

values given a particular set of starting values, and cannot

guarantee that there is not a better solution with very different

parameter values. Finding the global minimum is, of course, a

much harder task. For parameter spaces that are unusually

complex or high-dimensional (that is, with a large number of

variables), global optimization methods exist but are generally

extremely slow compared with algorithms that find a local

solution.

Fortunately for EXAFS analysis, the oscillatory nature of

the signal and the inherent understanding that interatomic

distances tend to be between 1 and 5 Å (coincidentally, the
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range to which EXAFS is most sensitive) tends to mean that

becoming stuck in false minima is not as common as one might

fear. Indeed, for many EXAFS curve-fitting problems one has

a good idea of the plausible values and ranges for parameter

values and can place constraints and bounds on them. In

addition, when using first-principles calculations in the

analysis, one starts with a model structure that is expected to

be close to the unknown structure, so that the nonlinear fit is a

refinement rather than a global search for the best values. Still,

problems can occur, especially for cases of multiple neigh-

bouring atoms at similar distances, and it can be important to

compare the results from many initial but reasonable starting

values and to check that fits converge to consistent results that

are sensible with as many tools as are available.

4. Fit statistics and parameter uncertainties

For any analysis of scientific data it is necessary to provide

reliable statistics about the quality of the fit and to provide

estimates for the uncertainties and interdependence of the

variable parameters. The �2 statistic from equation (2) is

clearly an important measure of the quality of an individual fit

and is widely used in the statistical treatment of many kinds of

data.

The definition of �2 scales with the uncertainty in the data,

", which has not yet been discussed. There are many possible

strategies for estimating uncertainties in EXAFS data, usually

based on the statistical treatment of many repeated

measurements. These can be very useful, but may not be

readily applied to every EXAFS spectrum. A simple approach

that can be applied to each spectrum relies on the observation

that the EXAFS signal decays rapidly with R. Thus, the

portion of the data at very high R (say above 15 Å) will likely

be dominated by noise. This assumes that the noise is inde-

pendent of R (white noise), which is not easy to verify for a

single spectrum. Tests and experience have shown that it gives

a reasonable estimate for data of low-to-normal quality, but

generally underestimates the noise level for very good data.

Fourier analysis and Parseval’s theorem can be used to give a

simple relationship between "R, the noise estimate in �(R),

and "k, the noise in �(k) (Newville et al., 1999). If properly

scaled, a good fit should have a value for �2 of around Nindep �

Nvarys, where Nvarys is the number of variables in the fit. In

practice this is rarely the case, which we will return to below.

One should expect that adding more variable parameters

should improve the fit, so it is useful to have statistics that

reflect both the fit quality and the number of free parameters.

The simplest of these is the reduced �2, which simply scales �2

by the number of free parameters,

�2
� ¼ �

2=ðNindep � NvarysÞ; ð5Þ

where Nvarys is the number of variables in the fit. In principle,

a good fit with properly estimated uncertainties should give

�2
� ’ 1. While the �2 statistic gives a useful measure of the

absolute fit quality, �2
� is more readily used to compare fits with

different numbers of variables, thereby helping to decide

whether adding a particular variable to a fit is justified or not.

Both �2 and �2
� are recommended for all reported EXAFS

analyses (Lytle et al., 1989). Other statistics such as the Akaike

information criterion (Akaike, 1974), which can be related to

�2 by

aic ¼ N lnð�2Þ þ 2Nvarys; ð6Þ

are very useful for comparing fits with different numbers of

variables. In addition, following the common practice for

X-ray diffraction data, it is common to report anR factor that

scales the misfit to the magnitude of the data itself instead of

the estimated uncertainty in the data,

R ¼
P

j

½yjðxÞ � zj�
2
=
P

j

z2
j ; ð7Þ

where, as in equation (2), y(x) is the parametrized model and

z are the measured data. This statistic has the advantage of a

simple interpretation as a fractional misfit, independent of the

uncertainty in the data itself, and is typically found to be below

0.05 or better for good fits.

A few methods can be used to estimate uncertainties in the

parameter values around the best-fit values and to determine

the interdependence or correlation of parameters. Generally,

the uncertainty for a parameter is assigned as the change from

its optimal value for which �2 is increased by 1 from its best

value. This gives so-called 1� uncertainties, which give a

confidence level of 0.683, and are most commonly used in

presenting results from EXAFS analysis. For higher confi-

dence, 3� uncertainties (with a confidence level of 0.997) can

be reported. To estimate the uncertainty, it is important to

allow all other variables to be re-optimized in response to the

changing value. The correlations between variables measures

how much and in what direction the other variables respond to

changing the value of the parameter in question.

As mentioned above, a fortunate result of the Levenberg–

Marquardt algorithm is that the partial derivatives used to find

the solution for the variables can be used to build the covar-

iance matrix, from which the correlations between pairs of

variables and the uncertainties in the variables that take those

correlations into account can readily be extracted. The diag-

onal elements of the covariance matrix give the uncertainties,

while the off-diagonal elements give the correlations between

variables. This approach does assume that the fit becomes

worse symmetrically and quadratically as each parameter

moves away from its optimal value and that the correlations

between variables are also symmetric. To test these assump-

tions, a more detailed exploration of the parameter values

near the best solution can be made either by brute force trying

multiple values or by using Monte Carlo methods. For most

EXAFS problems, it is generally found that the assumptions of

simple and symmetric deviations from the optimal solution are

pretty good (Curis & Bénazeth, 2000) and that the estimates

from the Levenberg–Marquardt method are of the correct

scale. Still, it must be acknowledged that this may not always

be the case. As with the best-fit values themselves, the

uncertainties from any single fit should be tested by running

multiple fits with small variations in starting values, data-
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processing parameters, data ranges and Fourier transform

parameters. This practice can help to identify unreliable

results, ‘false minima’, and give more confidence in the values

for uncertainties.

Another important caveat is that for most EXAFS analyses

using theoretical standards and reasonably high-quality data,

�2 is much larger than Nindep � Nvarys. This is due in part to

systematic errors that are not accounted for in " as estimated

from white noise and in part to due to incomplete treatment in

the calculations of the scattering factors. As mentioned above,

this means even the best fits to real EXAFS data often exceed

�2
� ’ 1 by an order of magnitude or more. With �2 much larger

than Nindep � Nvarys, increasing this value by 1 will give very

small estimates of the parameter uncertainties. It is common in

the EXAFS literature and recommended to report parameter

values that increase �2 by �2
� as the 1� uncertainties (Lytle et

al., 1989). This effectively asserts that the fit is ‘good’ and that

" should be adjusted so that �2
� is 1. While this clearly leaves

open questions about why the uncertainty in the data is

underestimated, it does produce more realistic values for the

parameter uncertainties.

EXAFS analysis has benefited greatly from a variety of

well proven general statistical treatments and data-analysis

methods. The description here attempts to capture the most

commonly used and best practices. There is no doubt further

room for improvement and the application of new and more

refined approaches to data analysis in the years ahead.
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