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A brief review of XANES theories is given which focuses on the basic theo-

retical framework rather than the technical details.

1. Introduction

Several useful computer programs are now available for

XAFS data analyses, which unfortunately means that we may

have become unfamiliar with the basic theory behind them.

Here, the theory of XAFS is briefly reviewed. A more

comprehensive discussion is given by Rehr & Albers (2000).

Here, we focus on the theoretical basic features of XANES

analyses. There are several methods to calculate the X-ray

absorption intensity I(!) for excitation by monochromatic

X-ray photons with energy !. The basic method is given by the

use of Fermi’s golden rule,

Ið!Þ ¼ 2�
P

f

jhfjHepj0ij
2�ðE0 þ ! � EfÞ; ð1Þ

where |0i and |fi are the initial and the final states of the target,

with energies of E0 and Ef, respectively. The electron–photon

interaction operator Hep is written in the first and second

quantizations,

Hep ¼
P

i

�ðriÞ ¼
R

dx yðxÞ�ðxÞ ðxÞ;

x ¼ ðr; �Þ; ð2Þ

where  and  † are the electron annihilation and creation

field operators. In the electric dipole (E1) approximation � is

written for the linear polarization parallel to the z axis:

�ðrÞ / rY10ðr̂Þ: ð3Þ

For practical calculations of the ground state |0i, some

useful methods have been developed, for example Hartree–

Fock (HF), density-functional theory (DFT) and configuration

interaction (CI) methods; CI methods can also be applied to

the final core-hole states |fi (Kosugi et al., 1984). The above

direct approaches have been used to study XANES analyses

excited from small systems such as molecules. For localized

magnetic systems such as 3d transition-metal compounds or

rare earths, multiplet and ligand field theory are quite useful to

calculate both the |0i and |fi states. These approaches provides

us with simple physical pictures with low computational cost,

but rely on semi-empirical calculations (van der Laan, 2006).

The multichannel generalization of real-space multiple-

scattering (MS) theory was developed to study XANES

spectra by Natoli and coworkers (Natoli et al., 1990). They

combined MS theory and CI approaches, and discuss shake-up

effects. It is however difficult to include bosonic excitations.

Applications to L2,3-edge XANES spectra show excellent
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results for metallic and insulating Ca and Ti compounds

(Krüger, 2018).

The formula (1) is not so convenient for handling large

systems such as solids. We thus rewrite it

Ið!Þ ¼ � 2
P

f

jh0jHepjfij
2 � Im

1

E0 þ ! � Ef þ i�

� �

¼ � 2Imh0jHepGðE0 þ !ÞHepj0i; ð4Þ

GðEÞ ¼
1

E � H þ i�
; ð�!þ0Þ: ð5Þ

This formula (4) is useful to derive multiple-scattering formula

and is discussed in more detail in the next section. The formula

(4) can also be written as an alternative expression,

Ið!Þ ¼
R1

� 1

dt h0jHepðtÞHepj0i expði!tÞ;

HepðtÞ ¼ expðiHtÞHep expð� iHtÞ: ð6Þ

This correlation function formula is particularly useful to

study many-body effects and phonon effects with aid of the

Keldysh Green’s function theory, which will be described later.

Two different approaches are discussed: many-body scat-

tering theory and the Keldysh Green’s function theory. Both

have merits and also demerits.

2. X-ray absorption intensity

Here, we discuss the X-ray absorption intensity calculated by

the use of formula (4). A basic theoretical framework, starting

from many-body scattering theory, was developed by Hedin

employing the quasi-boson approximation (Hedin, 1989). A

more sophisticated approach beyond the quasi-boson

approximation has been devised by Fujikawa (1999). These

scattering theories based on projection-operator techniques

have proven to be very powerful. Here, we provide an outline

of these theories.

In order to study the deep core processes, we introduce a

model Hamiltonian (Almbladh & Hedin, 1983),

H ¼ Hv þ hþ V þ Vcbby þ "cbyb: ð7Þ

Here Hv is the full many-electron Hamiltonian for the valence

electrons and Vc is the interaction between the core-hole and

valence electrons, which is switched on only when the core

hole is created. The effective one-electron Hamiltonian h

describes the elastic scatterings, whereas V describes the

inelastic scatterings inside solids. Within the present approx-

imation the initial state of the target is written as the product

|0vi|ci, where |0vi is the ground state of a no-hole Hamiltonian,

Hvj0vi ¼ Ev
0j0vi, and b and b† are the annihilation and crea-

tion operators, respectively, for the core level |ci. From

equation (4) Hep|0i is written for the XANES analyses as

Hepj0i ¼
P

k

hkj�jcic
y
kbj0vijci ¼

P

k

hkj�jcic
y
kj0vi;

where |ki is the photoelectron state which is the solution of

h|ki = "k|ki and c
y
k is the creation operator for that state.

Applying the approximate closure relation
P

k jkihkj ’ 1, we

have Hep|0i ’ |0vi�|ci, which yields

Ið!Þ ¼ � 2Imhcj��GðEÞ�jci;

GðEÞ ¼ h0vjðE � H�v � h � V þ i�Þ
� 1
j0vi;

H�v ¼ Hv þ Vc;

E ¼ E0 þ !; ð�!þ0Þ: ð8Þ

We should note that G(E) is a one-electron operator in the

photoelectron space because of h and V. By inserting the

closure relation in core-hole space,
P

n jn
�
vihn

�
v j ¼ 1 ðH�v jn

�
vi =

Ev�
n jn

�
vi), and noticing that the intrinsic (shake-up) amplitude

is given by Sn ¼ hn
�
v j0vi ¼ hn

�
v jbj0i, we can rewrite equation

(8) as

Ið!Þ ¼ � 2Im
h
hcj��

�
jS0j

2h0�vjGvðEÞj0
�
vi

þ
P

n6¼0

½jSnj
2hn�jGvðE � !nÞjn

�
vi

þ S�nS0hn
�
vjGvðEÞj0

�
vi þ cc� þ . . .

�
�jci

i
;

!n ¼ Ev�
n � Ev�

0 ; ð9Þ

where cc represents complex conjugation and Gv is defined as

GvðEÞ ¼ ðE � H�v � h � V þ i�Þ
� 1
: ð10Þ

We now apply the diagonal Green’s function expansion

developed by Hedin (Hedin, 1988; Fujikawa & Hedin, 1989)

and then obtain a practical XAFS formula in terms of damping

Green’s function and extrinsic loss operators Vnm (Fujikawa,

1993; Campbell et al., 2002),

Ið!Þ ¼ � 2Im
�
jS0j

2hcj��gcð"Þ�jci

þ
P

n6¼0

�
jSnj

2hcj��gcð" � !nÞ�jci

þ ðS�nS0hcj�
�gcð" � !nÞVn0gcð"Þ�jci þ ccÞ

�
þ . . .

�
;

Vnm ¼ hn
�
vjVesjm

�
vi; ðm 6¼ nÞ;

" ¼ Ev
0 � Ev�

0 � "c þ !; ð11Þ

where Ves is the bare electron–target interaction. The first

term in the large parentheses in equation (11) describes the

main X-ray absorption band without intrinsic and extrinsic

losses, the second term describes the intrinsic losses with

probability |Sn|2 and the third term describes the interference

between them. Here, the purely extrinsic loss term is missing.

To recover it careful analyses are necessary (Campbell et al.,

2002; Fujikawa & Niki, 2016). To study this problem, equation

(11) is not so convenient because the optical potential �c in

equation (14) has some characteristic features around the loss

thresholds. We thus rewrite the term in the large parentheses

in equation (9) in terms of the core-hole excitation operator

Xc defined by

Xc ¼
P

n6¼0

jn�viðSn=S0Þh0
�
v j: ð12Þ

The X-ray absorption intensity is now given by
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Ið!Þ ¼ � 2Im½hcj��h0�vjG0 þ ðG0V þ Xyc Þ

� GðVG0 þ XcÞj0
�
vi�jci�;

G0ðE0 þ !Þ ¼ ðE0 þ ! � H�v � hc þ i�Þ
� 1
: ð13Þ

The interference term ðVG0 þ XcÞj0
�
vi�jci suppresses the loss

structure near the loss threshold (Hedin, 1989).

The damping propagator gc for the core-hole potential is

given by

gcð"Þ ¼ ½" � hc � �cð"þ E�0Þ þ i��
� 1
;

hc ¼ Te þ h0
�
vjVesj0

�
vi; ð14Þ

where Te is the kinetic energy operator for the photoelectron.

An important factor to describe the photoelectron damping is

the optical potential �c, which is nonlocal, energy-dependent

and non-Hermitian,

�cðEÞ ¼ h0
�jVesQ

1

E � H þ i�
QVesj0

�i;

Q ¼ 1 � j0�ih0�j: ð15Þ

Thus, the optical potential can explain the photoelectron mean

free path, and can also have quite important effects on elastic

photoelectron scatterings. A practical method to calculate the

atomic optical potentials in solids has been developed within

the GW approximation (Fujikawa et al., 2000). This method

has successfully been applied to depth distributions excited

from solid surfaces (Shinotsuka et al., 2008).

In the intrinsic approximation (the first and second terms in

equation 11) we expect an abrupt jump in the X-ray absorp-

tion intensity at the loss threshold of the channel n above the

absorption edge with energy !n. We have never observed such

spike structures in the X-ray absorption near-edge structure

(XANES or NEXAFS) region because of strong destructive

interference (Hedin, 1989; Fujikawa, 1993). Detailed numer-

ical calculations show that extrinsic and intrinsic losses tend to

cancel near excitation thresholds, and correspondingly the

strength of the main peak increases (Campbell et al., 2002).

In addition to the many-body scattering theory, the Keldysh

Green’s function approach is quite useful in studying X-ray

absorption processes (Fujikawa, 1999, 2001); this is discussed

in Section 4.

3. Multiple-scattering theory

To derive the XAFS formula, we should notice that the core

orbital ’c is strongly localized on the X-ray-absorbing site A.

In this case, we can pick up the following site T-matrix

expansion of gc.

gc ¼ gA þ
P

�6¼A

gAt�gA þ
P

�6¼�6¼A

gAt�g0t�gA þ . . . ; ð16Þ

where gA is the scattering Green’s function for the localized

potential vA on site A,

gAð"Þ ¼ g0ð"Þ þ g0ð"ÞtAð"Þg0ð"Þ ¼ ð" � Te � vA þ i�Þ
� 1
:

The first term of equation (16) describes the isolated atomic

absorption intensity, the second the single scattering (A! �

! A) and the third the double-scattering (A! �! �! A)

terms. We assume that the incident X-rays are linearly polar-

ized in the z direction: � / rY10ðr̂Þ. For the circular polar-

ization propagating in the z direction, we have �� / rY1;�1ðr̂Þ.

The atomic absorption intensity �0 is now given in terms of the

Gaunt integral GðL1L2jL3Þ ¼
R

Y�L3
ðr̂ÞYL1

ðr̂ÞYL2
ðr̂Þ dr̂ and the

radial integral �c,

�0 /
8k

3

P

L

�cðlÞ
2
GðLc10jLÞ

2
;

�cðlÞ ¼
R

dr RlðkrÞRlc
ðrÞr3; L ¼ ðl;mÞ; ð17Þ

where k is the wavevector of the photoelectron with energy

k2/2. The core function is not so influenced by the environ-

ment, and is written as ’c ¼ RlcðrÞYLc
ðr̂Þ. The radial part of the

lth partial wave is Rl(kr). From a selection rule for the Gaunt

integral, the photoelectron angular momentum l is restricted

to 1 when lc = 0 and to lc � 1 when lc � 1.

To calculate the single-scattering term hc|�*gAt�gA�|ci, we

use the expansion in angular momentum applicable when

r 2 � and r0 2 A for a spherically symmetric potential vA,

gAðr; r0; kÞ ¼ � 2ik
P

L

hlðkrÞ expði�A
l ÞRlðkr0ÞYLðr̂ÞY

�
Lðr̂
0Þ; ð18Þ

where hl(kr) is the lth spherical Hankel function and �A
l is the

phase shift of the lth partial wave at site A. As r = r� + R�

(r� = r � R�), we can apply the origin-shift theorem (Rehr &

Albers, 2000; Fujikawa, 2002),

� ikhlðkrÞYLðr̂Þ ¼
P

L0
GL0LðkR�Þjl0 ðkr�ÞYL0 ðr̂�Þi

l� l0 ; ð19Þ

where GLL0 is given by

GLL0 ðkRÞ ¼ � 4�ik
P

L1

il1 hl1
ðkRÞYL1

ðR̂ÞGðL1LjL0Þ: ð20Þ

We thus have a simple formula for the single-scattering term,

P

�

hcj��gAt�gA�jci /
8�

3

P

�

P

LL0
il� l0 exp½ið�A

l þ �
A
l0 Þ��cðlÞ�cðl

0Þ

� GðLc10jLÞGðLc10jL0Þ

�
P

L1

GLL1
ð� kR�Þt

�
l1
ðkÞGL1L0 ðkR�Þ;

ð21Þ

where t�l is the angular momentum representation of the site

T-matrix at �, which can be written in terms of the phase shift

��l of the lth partial wave

t�l ðkÞ ¼ � ½expð2i��l Þ � 1�=ð2ikÞ: ð22Þ

In the same way, the nth-order multiple-scattering term can

be given in terms of the same ingredients,
P

�n�n� 1...�1

hcj��gAt�n
g0t�n� 1

. . . g0t�1
gA�jci

/
8�

3

P

mcLL0
il� l0 exp½ið�A

l þ �
A
l0 Þ��cðlÞ�cðl

0Þ

�GðLc10jLÞGðLc10jL0ÞðGXnÞ
AA
LL0 : ð23Þ

We have introduced a matrix labelled by site indices and

orbital angular momentum,
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X
��
LL0 ¼ t�l ðkÞGLL0 ðkR� � kR�Þð1 � �

��Þ: ð24Þ

Using these matrices, we can renormalize the full multiple-

scattering series to infinite order, atomic + single + double +

. . . +1, by noting that t
��
LL0 ¼ �

���LL0 t
�
l ,

�1 / �
8

3
Im
n P

mcLL0
il� l0 exp½ið�A

l þ �
A
l0 Þ��cðlÞ�cðl

0Þ

� GðLc10jLÞGðLc10jL0Þ½ðt � XtÞ
� 1
�
AA
LL0

o
: ð25Þ

This formula can be applied to XANES analyses. In equa-

tion (24) the T-matrix t�l reflects the electronic structure at site

�, whereas the propagator GLL0 ðkR� � kR�Þ reflects the

details of the atomic arrangements inside the cluster that we

are considering. In equation (25) we take the sum over L and

L0; however, the maximum l and l0 become larger for larger k

(lmax / k). In the XANES region lmax is quite small: typically

less than 5. When we take up to g waves and 40 atoms into

account, the dimension of the matrix X defined by equation

(24) amounts to 1000. This multiple renormalization technique

is only applicable in the low-energy region: the XANES

region. In contrast, lmax amounts to�20 in the extended X-ray

absorption fine-structure (EXAFS) region.

In the high-energy limit, the propagator GLL0 given by

equation (20) has a simple asymptotic form

GLL0 ðkRÞ ’ � 4�
expðikRÞ

R
Y�LðR̂ÞYL0 ðR̂Þ; ð26Þ

which yields the well known plane-wave EXAFS formula

from equation (21). More sophisticated approaches to finite

multiple scatterings have been developed on the basis of the

z-axis propagator developed by Fritzsche (1990) and Rehr &

Albers (1990). The real-space multiple-scattering approaches

shown above can be applied to all types of molecules, liquids

and solids as long as we have adequately good models.

The explicit XANES formula (25) is based on spherical

atomic potentials (muffin-tin potentials). Extensions to general

shape atomic potentials have been devised by several authors,

and some codes are now available (Hatada & Natoli, 2018).

For XANES analyses excited from strongly anisotropic

systems, the full-potential effects play an important role.

Instead of real-space approaches, we can use Bloch wave

approaches for crystalline solids. Neglecting the many-body

effects in equation (11), we have

Ið!Þ ’ � 2ImjS0j
2hcj��gcð"Þ�jci; ð27Þ

gcð"Þ ’ ð" � hc þ i�Þ
� 1
¼
P

i

j’iih’ij

" � "i þ i�
; ð28Þ

where |’ii is the solution of the one-electron equation hc|’ii =

"i|’ii. We should note that hc includes the core-hole effects.

For ordered solids, Bloch functions are used in the HF and

DFT methods. Some codes are widely used for practical band

calculations, which are implemented to calculate XANES

spectra (see, for example, Minar et al., 2018). In order to

consider the core-hole effects, they usually use supercells to

isolate the X-ray-absorbing atom. The supercell has to be

large enough to minimize the interaction between the

absorbing atom and its periodically repeated atoms.

The renormalized multiple-scattering XANES formula

(equation 11) has the damping one-electron Green’s function

gc given by equation (14). The one-electron Hamiltonian hc

has static hole potential h0�v jVesj0
�
vi, which is given by the sum

of the Hartree potential and the exchange potential. The

former is directly calculated within muffin-tin (MT) or non-

MT approaches, whereas the latter is usually calculated by the

use of some local density approximations. Slater averaged this

exchange contribution for electrons below the Fermi level,

and assumed that the exchange potential in a solid could be

approximated by a local potential where the constant electron

density n is replaced by the electron density n(r), which yields

the local exchange potential (Slater, 1951),

vexðrÞ ’ �
3

2

3nðrÞ

�

� �1=3

: ð29Þ

This potential is widely used, not only for electrons below the

Fermi level, but also in scattering problems, where it is basi-

cally incorrect. Thus for high energies exchange scattering can

be neglected, whereas the Slater exchange potential still has

an influence. A more widely used variant of vex is the X�

potential, vX� = �vex.

For scattering problems, the exchange potential before

averaging is more motivated. This potential is local and energy-

dependent and decays at high energy; it was shown by Hara to

be successful for electron scattering from atoms and molecules

(Hara, 1967). It is often called the Dirac–Hara potential.

These methods employ the HF approximation for a uniform

electron gas. Hedin and Lundqvist suggested a scheme in

which the electron-gas self-energy in the GW approximation

�GW(q, ") is used with an r-dependent momentum q(r) (Hedin

& Lundqvist, 1971). Lee and Beni applied such a potential to

EXAFS, using the plasmon pole approximation, and showed

that this potential gives excellent results (Lee & Beni, 1977).

We can show that the optical potential �c defined by

equation (15) is approximately equivalent to the self-energy in

the GW approximation (Fujikawa & Hedin, 1989). A practical

method to calculate the atomic optical potential is thus

developed based on the GW approximation. Both the polar-

ization P and the one-electron Green’s function G can be split

into core and valence parts. The core polarization is assumed

to be much smaller than the valence polarization Pv. We then

have an expansion in powers of Pc for the self-energy (Hedin

& Lundqvist, 1970),

�c ¼ GvWv þ Vc
ex þGvWvPcWv þ . . . : ð30Þ

Here GvWv is the self-energy from the valence (itinerant)

electrons, while Vc
ex is the bare exchange and GvWvPcWv is the

screened polarization potential from the ion cores. We can

calculate GvWv by use of the Hedin–Lundqvist potential and

Vc
ex by use of the local density approximation discussed

previously. The polarization potential Vpol = GvWvPcWv can

be approximated by use of the average excitation energy �,

Vpolðx; x0;!Þ ¼ Aðr; r0ÞGvðx; x0;! � �Þ: ð31Þ
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The valence Green’s function Gv is energy-dependent; we

should note that the energy ! � � is used here. The static

polarization potential A is not energy-dependent. These

nonlocal self-consistent optical potentials are applied to

electron–atom elastic scatterings, which demonstrate satis-

factory agreement with the observed results (Fujikawa et al.,

2000).

4. Phonon effects

Among phonon effects on XAFS, the EXAFS Debye–Waller

factors have extensively been studied (Fornasini, 2012),

whereas other factors such as Franck–Condon factors and

electron–phonon interactions are rarely discussed. Ankudinov

and Rehr have shown that local atomic displacements are

responsible for additional XANES peaks (Ankudinov &

Rehr, 2005). They used a simple formula for the X-ray

absorption intensity I(!, Q) considering the thermal average

shown by h . . . i,

hIð!;QÞi ¼ Ið!;Q0Þ þ
1

2

P

�i

P

�j

hui�uj�i
@2Ið!;QÞ

@ui�@uj�

� �

0

; ð32Þ

where Q designates the assembly of nuclei Q = (R�, R�, . . . ).

The above equation takes a small deviation from the equili-

brium atomic configuration Q0(u = Q � Q0). The first-order

terms cancel since hui�i = 0, (i = x, y, z). For solids the

summation over atomic sites �, �, . . . runs over all nearby

composite atoms.

A prominent temperature-dependence of the pre-edge

structures is observed in Ti K-edge XANES of SrTiO3 from 15

to 300 K. One of the pre-edge peaks shows an increase in

intensity with temperature (Nozawa et al., 2005). Manuel and

coworkers presented the Al K-edge XANES spectra of

corundum and beryl in the temperature range 300–930 K

(Manuel et al., 2012). These experimental results provide

evidence of the role of thermal fluctuation in XANES at the

Al K edge: the pre-edge grows and shifts to lower energy with

temperature. They used DFT calculations for both compounds

and demonstrated that the pre-edge peak originates from the

dipole-forbidden 1s! 3s transition. The theoretical analyses

used are based on previous papers (Cabaret & Brouder, 2009;

Brouder et al., 2010). Nemausat and coworkers incorporated

the nuclear motion by generating several non-equilibrium

configurations from the dynamical matrix within the Born–

Oppenheimer and quasi-harmonic approximations (Nemausat

et al., 2015). The averaged calculated Mg K XANES spectra in

MgO have been compared with experimental data, and show

satisfactory agreement.

Here, a theory developed by Fujikawa and coworkers is

outlined to illustrate how to apply the Keldysh Green’s

function technique to XANES analyses (Fujikawa et al., 2015).

The X-ray absorption intensity I(!) at T = 0 K is given by the

correlation function (see equation 6),

Ið!Þ ¼
R

dx dx0��ðxÞ�ðx0Þ �
R1

� 1

dt h0jnðxtÞnðx0Þj0i expði!tÞ;

ð33Þ

where n(x) =  †(x) (x), [x = (r, �)]. The last expression is

obtained in dipole length and acceleration forms.

The above formula is extended to finite temperature by use

of the thermal average instead of the average over the ground

state |0i. The reducible polarization propagator �> is given by

i�>ð1; 2Þ ¼ h�nð1Þ�nð2Þi ¼ hnð1Þnð2Þi � hnð1Þihnð2Þi; ð34Þ

where �n(1) = n(1) � hn(1)i is the electron-density fluctuation.

The second term in the last expression makes no contribution

to photo-excitation because the time integration in equation

(33) gives rise to the factor �(!). We thus obtain an expression

for the X-ray absorption intensity,

Ið!Þ ¼ i
R

dx dx0��ðxÞ�ðx0Þ �
R1

� 1

dt �>ðxt; x0Þ expði!tÞ:

ð35Þ

The reducible polarization � is given in terms of irreducible

polarization P and the screened Coulomb interaction W

(Hedin & Lundqvist, 1970),

�ð1; 2Þ ¼ Pð1; 2Þ þ
R

c
d3 d4 Pð1; 3ÞWð3; 4ÞPð4; 2Þ: ð36Þ

The time integrals along the Keldysh contour are denoted asR

c
. . . : The lowest order approximation in the skeleton

expansion gives

i�>ðxt; x0Þ ’ iP>ðxt; x0Þ ’ g>ðxt; x0Þg<ðx0; xtÞ: ð37Þ

The greater one-electron Green’s function g> describes the

propagation of excited photoelectrons and the lesser one-

electron Green’s function g< describes hole propagation. We

should notice that both already include some correlation

effects and phonon effects.

In the core-excitation processes the latter is well approxi-

mated by use of the model Hamiltonian (equation 7) and we

have

ig<ðx0; xtÞ ¼ � h yðxtÞ ðx0Þi ’ � h’�c ðxÞ’cðx
0ÞbyðtÞbi: ð38Þ

The thermal average in equation (38) is taken over electronic

and phonon states. As shown below, ’c(r) (spin effects will be

neglected in this section) still depends on phonon states. From

now on we will use the Born–Oppenheimer approximation for

simplicity. The core function ’c is well approximated by

’cðrÞ ¼ ’cðr � R0
A � uAÞ;

’cðrÞ ¼ Rlc
ðrÞYLc

ðr̂Þ; ð39Þ

where R0
A is the equilibrium position of the X-ray-absorbing

atom A and uA is the deviation from it. For the small deviation,

we have

’cðr � R0
A � uAÞ ¼

P

L

’c
Lðr � R0

AÞJLLc
ðuAÞ: ð40Þ

Even if the core function is a 1s function, phonon vibrations

yield nonspherical contributions as shown above.
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Here, the full Hamiltonian H includes the phonon Hamil-

tonian Hvib in addition to the electronic Hamiltonian He given

by equation (7),

H ¼ He þHvib ¼ H�e þH�vib;

H�e ¼ H�v þ Vc; ð41Þ

where Hvib is the phonon Hamiltonian with no core hole and

H�vib is the phonon Hamiltonian with a core hole on ’c, which

is given in the linear displacement approximation,

H�vib ¼ Hvib þ
P

�

ðB�a� þ B��a
y
�Þ; � ¼ ðq; jÞ;

where q is the crystal momentum and j is the phonon branch.

We thus have a useful expression for the hole propagator gh

with the aid of equation (40),

ig<ðr0; rtÞ ¼ �
P

LL0
’c

Lðr � R0
AÞ’

c
L0 ðr
0 � R0

AÞ

� hJ�LLc
ðuAÞJL0Lc

ðuAÞ expðiHvibtÞ

� expð� iH�vibtÞivibhexpðiHetÞ expð� iH�e tÞie; ð42Þ

where h . . . ivib and h . . . ie are the averages over phonon states

and electron states, respectively.

We now use some simple approximations: Hvib ¼ H�vib (the

difference of Hvib and H�vib can contribute to Franck–Condon

effects) and the harmonic approximation for the phonon

Hamiltonian Hvib, which yields

hJ�LLc
ðuAÞJL0Lc

ðuAÞivib ’ 4�ð� 1Þ
l0þlc expða2�2

AÞ

�
P

L1

il1 jl1
ðia2�2

AÞGðLcL1jLÞ

� GðLcL1jL
0Þ; ð43Þ

where a is the exponent of the core function RlcðrÞ and �2
A is

the averaged thermal fluctuation of the X-ray-absorbing atom

A given by

�2
A ¼ hu

2
Aivib=3:

The most important term in the above sum in equation (43)

arises from the term with l1 = 0 and the next is from the term

with l1 = 1, because a2�2
A � 1. We thus have an interesting

formula for the hole Green’s function for deep core excitation

from ’c where atomic thermal motions are taken into account,

ig<ðr0; rtÞ ¼
h
� ’c�

Lc
ðr � R0

AÞ’
c
Lc
ðr0 � R0

AÞj0ðixÞ

þ 4�i
P

LL0
’c�

L ðr � R0
AÞ’

c
L0 ðr
0 � R0

AÞj1ðixÞ

�
P

m1

GðLc1m1jLÞGðLc1m1jL
0Þ þ . . .

i
expðxÞ

� hexpðiHetÞ expð� iH�e tÞie; ð44Þ

where x ¼ a2�2
A and jl(x) is the spherical Bessel function. The

first term describes the excitation from the core function with

the same orbital angular momentum lc; the thermal vibrations

have influenced the weight from 1 to expðxÞj0ðixÞ. The second

term in the large square brackets is simplified for the K-edge

excitation (lc = 0),

P

m1

’c�
1m1
ðr � R0

AÞ’
c
1m1
ðr0 � R0

AÞj1ðixÞ: ð45Þ

The thermal motion thus gives rise to the excitation from a

p-type core orbital.

So far, we have focused on the hole propagator g<. Next, we

investigate the particle propagator g>. A useful expression is

given in terms of the particle Dyson orbital fq,

ig<ðrt; r0Þ ¼
P

q

fqðrÞf
�
q ðr
0Þ expð� i"qtÞ;

fqðrÞ ¼ hN; 0j ðrÞjN þ 1; qi;

"q ¼ EqðN þ 1Þ � E0ðNÞ: ð46Þ

In a one-electron approximation the particle Dyson orbital fq

is reduced to the corresponding excited orbital or continuum

photoelectron wavefunction with damping. Substituting

equations (37), (42) and (44) into equation (35), we obtain a

useful formula to describe the pre-edge structures in K-edge

X-ray absorption spectra where Franck–Condon effects are

neglected,

Ið!Þ ¼ 2� expðxÞ
P

q

h
jhfqj�j’1sij

2j0ðixÞ

þ
P

m

jhfqj�j’
1s
1mij

2j1ðixÞ þ . . .
i

Acð"q � !Þ;

Acð"Þ ¼
P

n

jSnj
2�ð" � "nÞ; ðx ¼ a2�2

AÞ: ð47Þ

The first term is the conventional X-ray absorption intensity

for the 1s ! fq transition, which has phonon effects in the

factor expðxÞj0ðixÞ. The second describes the absorption

intensity induced by atomic displacement due to thermal

motion. We have an explicit expression for the electron–

photon interaction operator � neglecting the unimportant

numerical factor,

� ¼ �E1 þ�E2 þ . . . ;

�E1 ¼ e � r; �E2 ¼
i

2
ðe � rÞðk � rÞ; ð48Þ

where �E1 is the electric dipole (E1) and �E2 is the electric

quadrupole (E2); e and k are the photon polarization and

propagation vectors. We notice that |e| = 1, != ck and e · k = 0.

The multipole transition operators in the relativistic theory are

discussed in Section 5.

Now we consider 1s ! 3d transitions in transition-metal

atoms that have vacant 3d levels. When we consider the

1s ! 3d excitation, only the E2 transition is allowed in the

static approximation, which should be quite small. When we

take the atomic thermal motion into account, the E1 transition

’1s
1m ! 3d (the second term in equation 47) is also allowed.

Some numerical calculations show that the pre-edge intensity

increases with temperature, which is in accordance with the

observed results. For small �A the temperature-dependence is

a linear function of the temperature T and the E1 and E2

transitions are of the same order; however, a nonlinear

temperature-dependence is observed and the E1 transition is

dominant for large �A (Fujikawa et al., 2015).
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Above the K edge, we directly use g> instead of the particle

Dyson orbitals fq to describe the photoelectron propagation.

In the formula Imh’c|�
*g>�|’ci, we can replace g> by 2gr (the

retarded Green’s function). The XANES formula is now

reduced to

Ið!Þ ¼ �
1

�
Im
h
h’1sj�

�grð"Þ�j’1sij0ðixÞ

þ
P

m

h’1s
1mj�

�grð"Þ�j’1s
1mij1ðixÞ� expðxÞ: ð49Þ

The retarded Green’s function gr plays the same role as the

scattering Green’s function gc because of the identical

boundary condition. We can apply the multiple-scattering

theory as discussed previously to both the first and second

terms in equation (49).

Even in the XANES region, the Debye–Waller factors are

important to study the temperature-dependence, although

they are not as prominent compared with EXAFS Debye–

Waller factors because of the small k in the XANES region.

For XANES analyses excited from systems with large

disorder, the XANES Debye–Waller factors should play an

important role. In the low-energy region spherical wave effects

are crucial. With the aid of formula (40), the temperature-

dependent path matrix from the � site to the � site is now

given by

X
��
LL0 ðTÞ ¼

P

L1

X
��
LL1

K
��
L1L0 ðTÞ;

K
��
L1L0 ðTÞ ¼

R
dr̂ Y�L1

ðr̂Þ � exp �
k2

2
h½ðu� � u�Þ � r̂�

2
i

� �

YL0 ðr̂Þ;

ð50Þ

where X is given by equation (24).

5. Relativistic XANES theory

As is well known, the influence of relativistic effects increases

with the atomic number Z. To date, several relativistic XAFS

theories have been investigated using perturbation approa-

ches, which have successfully been applied to XAFS from light

elements (Brouder & Hikam, 1991). Gesztesy and coworkers

have developed a useful approach to represent the Dirac

Green’s function in terms of a full nonrelativistic Green’s

function (Gesztesy et al., 1984). An alternative theoretical

approach has been developed to study relativistic effects on

XANES spectra (Ankudinov & Rehr, 1997). They solved the

Dirac equation for limiting cases and arrived at an inter-

polation scheme that allows one to circumvent the solution of

the coupled radial Dirac equation, which occurs within a fully

relativistic scheme. A fully relativistic theory for magnetic

EXAFS has been presented based on the Dirac equation for

spin-polarized systems (Ebert et al., 1999). For X-ray magnetic

circular dichroism (XMCD) relativistic effects are essential, in

particular due to spin–orbit interaction. Some useful review

articles have been published (Ebert, 1996; Wende, 2004).

The X-ray absorption intensity is given for excitation from

the core-level 4-spinor |ci similar to equation (8), where |ci is

the 2-spinor,

Ið!Þ ¼ � 2Imhcjð� �AÞ
y
GDð"Þð� �AÞjci: ð51Þ

Here, �k (k = x, y, z) are the Dirac matrices, A is the vector

potential of the incident X-ray, " is the kinetic energy of

photoelectrons and ! is the X-ray photon energy.

The core state |ci can be written in terms of the 2-spinor ’c

(large component) and �c (small component),

jci ¼
j’ci

j�ci

� �

;

’cðrÞ ¼ glc
ðrÞy

lc
jc�c
ðr̂Þ;

�cðrÞ ¼ iflc
ðrÞ� � r̂y

lc
jc�c
ðr̂Þ: ð52Þ

The Pauli spinors ylc
jc�c
ðr̂Þ are simultaneous eigenstates of J2,

L2, S2 and Jz (J = L + S). We can obtain the radial functions glc

and flc by solving the one-electron Dirac equation.

The Foldy–Wouthuysen (FW) transformation provides us

with a useful connection between nonrelativistic and relati-

vistic quantum theory (Schwable, 2008). Bouldi & Brouder

(2017) derived a relativistic XAFS formula and have shown

that the interaction operator � · A is rewritten for absorption,

� �A ¼
�1 0

0 �1

� �

þ
0 �2

�2 0

� �

; ð53Þ

where �1 = �E1 + �E2, as given by equation (48), and �2 is

�2 ¼
1

2!
ðe� kÞ � ðr� �Þ:

Bouldi and Brouder have also shown that the relativistic

formula for the X-ray absorption intensity (equation 51) can

be rewritten on the basis of the FW transformation, which is

given only in terms of the large component |’ci,

Ið!Þ ¼ � 2Imh’cj�
ygð"Þ�j’ci; ð54Þ

� ¼ �1 þ�M1 þ�SP: ð55Þ

Here, �M1 is the magnetic dipole transition operator and �SP

is the spin–position operator introduced by Bouldi and

Brouder,

�M1 ¼
1

2c!
ðe� kÞ � ðLþ �Þ;

�SP ¼
i!

4c2
ðe� rÞ � �: ð56Þ

We should note that the nonrelativistic Green’s function g(")

additionally has spin–orbit interaction because of the FW

transformation. The new operator �SP plays an important role

in the study of X-ray magnetic circular-dichroism (XMCD)

spectra (Bouldi et al., 2017; Kogo et al., 2020).

A different approach based on the Gesztesy expansion

can be applied to XAFS analyses. The one-electron Dirac

Hamiltonian HD for a potential V is written

HD ¼
V þ c2 c� � p

c� � p V � c2

� �

: ð57Þ
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We can define a Green’s function for the Dirac Hamiltonian,

GDð"Þ ¼
1

"þ c2 � HD þ i�
: ð58Þ

As demonstrated by Gesztesy and coworkers, GD(") is given

by

GDð"Þ ¼
P1

n¼0

Tn
g gQ

Qg QgQþ 1=ð2c2Þ

� �

;

T ¼
0 X

0 Y

� �

;

X ¼ gQðV � "Þ;

Y ¼ ½QgQ þ 1=ð2c2Þ�ðV � "Þ;

Q ¼
� � p

2c
;

gð"Þ ¼
1

" � Te � V þ i�
: ð59Þ

In equation (59), g(") has no effects from the spin–orbit

coupling, in contrast to g(") in equation (54). The relativistic

Green’s function GD is represented in terms of the non-

relativistic Green’s function g, which includes the potential V

(Gesztesy et al., 1984).

Substituting the Gesztesy expansion for the relativistic

Green’s function GD in equation (51), we obtain a useful

formula to describe the X-ray absorption intensity to include

important relativistic effects,

Ið!Þ ¼ I1ð!Þ þ I2ð!Þ;

I1ð!Þ ¼ � 2Im
h
h’cj�

y
1ðgþ �gÞð"Þ�1j’ci

þ h’cj�
y
1gð"ÞQ�1j�ci þ h�cj�

y
1Qgð"Þ�1j’ci

i
;

I2ð!Þ ¼ � 2Im
h
h’cj�

y
1gð"Þ�2j�ci þ h�cj�

y
2g�1j’ci

þ h’cj�
y
1gQ�2j’ci þ h’cj�

y
2Qg�1j’ci

i
; ð60Þ

�gð"Þ ¼ gð"ÞQðV � "ÞQgð"Þ: ð61Þ

In order to derive the Pauli equation from the Dirac equation,

we use an approximation (Schwable, 2008),

j�ci � Qj’ci: ð62Þ

Substituting equation (62) into equation (60), we obtain

I1ð!Þ ¼ � 2Im
h
h’cj�

y
1ðgþ �gÞ�1j’ci

þ h’cj�
y
1g�SP þ�

y
SPg�1j’ci

i
;

I2ð!Þ ¼ � 2Im
h
h’cj�

y
1g�M1 þ�

y
M1g�1j’ci

i
: ð63Þ

We thus obtain quite a similar X-ray absorption formula as

obtained in the framework of the FW transformation (see

equation 54; Kogo et al., 2020).

In the nonrelativistic limit (c ! 1) only �1 in I1 (see

equation 63) contributes to the X-ray absorption intensity. As

pointed out by Brouder and coworkers, Q(V � ")Q in equa-

tion (61) is written

QðV � "ÞQ ¼ �
1

4c2
½rV � r þ ðV � "Þr2� þ �ðrÞ� � L; ð64Þ

where � for a spherically symmetric potential V is given by

(Brouder et al., 1996)

�ðrÞ ¼
1

4c2r

dVðrÞ

dr
:

The spin–orbit coupling term (the third term of equation 64)

for photoelectrons can give a finite contribution to the K-edge

XMCD. The first and the second terms in equation (64) can

contribute to XANES spectra, but make no contribution to

XMCD spectra.

So far, we have discussed one-electron relativistic XAFS

theory. One of the important advantages of the Gesztesy

expansion is its direct extension to many-body relativistic

theory. A many-body relativistic theory for the analysis of

XAFS spectra has been developed on the basis of the

quantum electrodynamics (QED) Keldysh Green’s function

approach, in which photon Green’s functions play an impor-

tant role (Fujikawa, 2004, 2005).

In QED theory both electron and photon Green’s functions

are important to describe X-ray absorption processes.

The space components of the photon Green’s function

Dij(1, 2) (i, j = x, y, z) are given in terms of the vector potential

fluctuations,

iDijð1; 2Þ ¼
1

4�
hTc½�A

ið1Þ�Ajð2Þ�i;

�Aið1Þ ¼ Aið1Þ � hAið1Þi: ð65Þ

The path-ordering operator Tc is used. We should note that

the vector potentials Ai (i = 1, 2, 3) are q-numbers. In QED,

the absorption intensity I(!) is given by use of the photon

Green’s function D,

Ið!Þ / � Imhdlð�ÞjðPþ PDPÞ
>lm
ð!Þjdmð�Þi;

dlð�Þ ¼
1

V1=2
expðik � rÞelð�Þ; ð66Þ

where e(�) (� = k, s) is the polarization vector of the X-rays

(s stands for the polarization mode) and V is the volume of the

normalization box. Here, the photon self-energy P is defined

as the functional derivative of the average of the electron

current density j� with respect to the average of the vector

potential operator A� (�, � = 0, 1, 2, 3),

P��ð1; 2Þ ¼
4�

c

�hj�ð1Þi

�hA�ð2Þi
: ð67Þ

In the fundamental equation (66), only the spatial parts are

used.

As long as we consider only the first term of P in equation

(66), we obtain a similar XAFS formula to equation (63):

g, however, has many-body effects in the electron retarded

self-energy �r, which works as an optical potential for

photoelectrons.

One of the outstanding features of the QED theory allows

us to discuss radiation-field screening in XAFS spectra. We

can show that
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hdlð�ÞjðPþ PDPÞ
>lm
jdmð�Þi

/
R

dr1 dr2 �yðr1ÞðPþ PWPÞ
>
ðr1; r2;!Þ�ðr2Þ; ð68Þ

where P ¼ P0
0 is the irreducible polarization used in non-

relativistic many-body theory (Hedin & Lundqvist, 1970).

Both P and W describe the electron–electron interaction. We

now convert the time integration on the Keldysh path to the

ordinary time integration from � 1 to 1; we have a useful

formula to infinite order of the Coulomb interaction v,

ðPþ PWPÞ
>
¼ ð1 � PrvÞ

� 1
P>ð1 � vPaÞ

� 1
; ð69Þ

where Pa is the advanced polarization. Substituting equation

(69) into equation (66), we thus have an important relativistic

XAFS formula,

Ið!Þ / � Imh’cj
~�yð!ÞGrð"Þ� ~�ð!Þj’ci; ð70Þ

where Gr is the relativistic 4 � 4 retarded Green’s function

and � is also a 4 � 4 diagonal matrix,

� ¼
1 0

0 � 1

� �

:

We now define the dynamically screened electron–photon

interaction ~�ð!Þ,

~�ðr; !Þ ¼
R

dr0 ð"aÞ
� 1
ðr; r0;!Þ�ðr0Þ; ð71Þ

which explicitly depends on the photon energy !. Radiation-

field screening plays an important role in explaining the large

deviation of the L2 to L3 branching ratio 1/2. Schwitalla and

Ebert have developed an approach to study the above

problem based on time-dependent DFT and the linear

response formalism (Schwitalla & Ebert, 1998). Ankudinov

and coworkers have also studied these problems taking

account of the radiation-field screening within the linear

approximation (Ankudinov et al., 2003).

A full relativistic XANES theory using the KKR–Green’s

function method has been developed by Ebert et al. (2011).

6. Ultrafast XANES

Ultrafast XAFS measurements have been applied to study

transient structures after laser pump excitation (Bressler &

Chergui, 2004). These analyses are based on the assumption

that ultrafast XAFS provides us with snapshot spectra. There

is a question as to whether or not these analyses can be built

on a sound theoretical basis. Ultrafast XAFS using X-ray free-

electron lasers (XFELs) is very promising. Mukamel and

coworkers have contributed to the development of pump–

probe XAFS theory based on nonlinear response theory in

Liouville space (Tanaka et al., 2001; Mukamel, 2005; Healion

et al., 2008). A theory for the study of pump–probe ultrafast

XAFS spectra has been proposed based on a nonrelativistic

Keldysh Green’s function approach which can incorporate

both intrinsic and extrinsic losses and also resonant effects

(Fujikawa & Niki, 2016).

Here, we study pump–probe XAFS. In the remote past it

was assumed that the system is in the ground state |0i. The full

time evolution operator U(t, t0) is influenced by both the A

and B operators, where A describes the interaction between

the probe X-ray pulses from the XFEL and the electronic

systems after the pump pulse irradiation. In addition to the

probe X-rays, the pump laser is used to excite the target. The

interaction between the pump pulse and the system is

described by the operator B. The operators are explicitly given

by

Að1Þ ¼ aðt1Þ�ðr1Þ þ cc; ð1 ¼ r1; t1Þ

Bð1Þ ¼ bðt1Þ�ðr1Þ þ cc: ð72Þ

The factors a and b show the time-dependence of the pulses:

a(t) is only nonzero in the interval t1 < t < t2 and b(t) 6¼ 0 in the

interval 0 < t < t0 (t0 < t1). We now define the operator V1 as

V1ðt1Þ ¼
R

dr1  
yðr1ÞAð1Þ ðr1Þ

¼ aðt1Þ expð� i!�t1Þ
R

dr1 �ðr1Þnðr1Þ: ð73Þ

We should note that A is much weaker than B. We thus fully

keep B, whereas we keep only the lowest-order terms with

respect to A, which yields the expansion of U,

Uðt; t0Þ ¼ U2ðt; t0Þ � i
Rt

t0

dt1 U2ðt; t1ÞV1ðt1ÞU2ðt1; t0Þ þ � � � ;

U2ðt; t0Þ ¼ T exp � i
Rt

t0

dt1 H þ
R

dr1  
yð1ÞBð1Þ ð1Þ

� �
( )

: ð74Þ

The X-ray absorption probability of � = (k, s) photons at time t

is now given by use of the second term of U in equation (74),

I�ðtÞ ¼
P

n6¼0

�
�
�hn
�
�
Rt

t0

dt1 U2ðt; t1ÞV1ðt1ÞU2ðt1; t0Þ
�
�0i

�
�
�

2

¼
Rt

t0

dt1

Rt

t0

dt2 a�ðt1Þaðt2Þ exp½i!�ðt1 � t2Þ�

�
R

dr1 dr2 ��ðr1Þ�ðr2Þh0j�nð1Þ�nð2Þj0i; ð75Þ

which yields a basic formula to describe the pump–probe

XAFS at time t,

I�ðtÞ ¼
Rt

t0

dt1

Rt

t0

dt2 a�ðt1Þaðt2Þ exp½i!�ðt1 � t2Þ�

�
R

dr1 dr2 ��ðr1Þ�ðr2Þi�
>ð1; 2Þ; ð76Þ

which is quite similar to equation (35). The pump pulse

switches on at t0. The reducible polarization � satisfies equa-

tion (36); however, it already includes the effects of pump

pulse B, which is strong enough that we should go beyond

weak perturbation theory.

The lowest-order approximation for �> is obtained by use of

the skeleton expansion in terms of the dressed electron

Green’s function GB (see also equation 37),

�ð1; 2Þ � P>0 ð1; 2Þ ¼ � ig>B ð1; 2Þg<B ð2; 1Þ: ð77Þ

The pump pulse is included in GB, which satisfies the Dyson

equation in Keldysh space,
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i
@

@t1

� hð1Þ � Bð1Þ � VHð1Þ

� �

GBð1; 2Þ

�
R

c
d3 �Bð1; 3ÞGBð3; 2Þ ¼ �cð1; 2Þ; ð78Þ

where
R

c
represents integration over the closed time path, �c is

the delta function on the closed path and �B is the electron

self-energy including the pump pulse B.

We now consider the no-loss channel for simplicity. The

absorption intensity is given by use of the time-dependent

intrinsic amplitude S0(t),

I�ðtÞ ¼ Re
n Rt

t0

dt1

Rt

t0

dt2 a�ðt1Þaðt2ÞS0ðt1Þ
�

� S0ðt2Þ exp½i!�ðt1 � t2Þ�
R

dr1 dr2 ’cðr1Þ
�

� ��ðr1Þg
>
B ð1; 2Þ�ðr2Þ’cðr2Þ

o
: ð79Þ

The hole propagator g<B can be given in terms of the time-

dependent intrinsic amplitude S0(t), which includes the history

of the system after pump excitation,

S0ðtÞ ¼
P

j

h0�jbjjihjjÛðt; t0Þj0i � exp½iðE�0 � E0Þðt � t0Þ�; ð80Þ

Ûðt; t0Þ ¼ T exp
h
� i

Rt

t0

dt1 Bð1Þn̂ð1Þ
i
;

n̂ð1Þ ¼ exp½iHðt1 � t0Þ�nðr1Þ exp½� iHðt1 � t0Þ�; ð81Þ

where |0*i is the eigenstate of the hole Hamiltonian H�v and |ji

and |0i are the eigenstates of the no-hole Hamiltonian Hv. The

time-dependent Dyson orbitals are also used to study ultrafast

photoemission spectra from molecules (Perveaux et al., 2014;

Spanner & Patchkovskii, 2009).

For practical purposes, the random-phase-approximation

(RPA)–boson approach is introduced in order to derive time-

dependent XAFS at a delay time tA, which is given by (Fuji-

kawa & Niki, 2016)

I�ðtAÞ / � jL0ðtAÞj
2 � Imhcj��g>B ½";QðtAÞ��jci; ð82Þ

jL0ðtAÞj
2 ¼ 1þ 2

P

p

jCpj sinð!ptA � �pÞ; ð83Þ

where |Cp| and �p are energy-dependent parameters for the

pth boson with energy !p > 0. The instantaneous atomic

configuration at time tA is denoted Q(tA) = [R1(tA), R2(tA),

. . . ]. The factor � Imhcj��g>B �jci reflects the averaged

structure Q(tA) around an X-ray-absorbing atom, which can

differ from that in the ground electronic state. The new factor

|L0(tA)|2 shows rapid oscillation as a function of the delay tA;

!p is of the order of a few eV. These rapid oscillations caused

by the pump pulse excitation can provide us with useful

information on excited electronic structures and dynamics of

the systems. These rapid oscillations, however, should be

redundant in obtaining the time-dependent structural change

after the pump pulse irradiation.

7. Bethe–Salpeter equation

The formula (35) accurately describes the XAS processes. The

reducible polarization � satisfies equation (36). The polar-

ization � is related to the density correlation function L, which

is a solution of the integral equation called the Bethe–Salpeter

equation in Keldysh space (Bechstedt, 2015; Strinati, 1988),

Lð12; 1020Þ ¼ Gð1; 20ÞGð2; 10Þ

þ
R

c
d3 . . . d6 Gð1; 3ÞGð4; 10Þ�ð36; 45ÞLð52; 620Þ;

ð84Þ

where

�ð36; 45Þ ¼ � i�cð3; 4Þvcð3; 5Þ�cð5; 6Þ þ
��ð3; 4Þ

�Gð5; 6Þ
: ð85Þ

In some special cases L is related to other functions such as the

polarization �,

Lð12; 1þ2þÞ ¼ i�ð1; 2Þ: ð86Þ

The Bethe–Salpeter (BS) equation (84) for L is much more

complicated compared with the Dyson equation (36) for �.

Combining equations (84) and (86) gives the same results for

the XAS analyses as the reducible polarization � in equation

(35). In the low-order approximation, however, they can give

different results.

Ankudinov and coworkers presented a combined approach

of the BS equation and the time-dependent DFT theory for

XANES calculations (Ankudinov et al., 2005). They found

that their combined approach worked well both for cases in

which the local field effect dominates, for example tungsten,

and in which the core-hole interaction dominates, for example

MgO. Rehr and coworkers compared the BS equation

approach with the final-state rule to handle core-hole effects

within the independent electron approximation (Rehr et al.,

2005).

The BS equations have been applied to optical properties of

solids (Strinati, 1988) with remarkable success, but they

require quite a large-scale computation. On the other hand,

equation (35) partly includes radiation-field screening (see

equations 70 and 71). If we go beyond the lowest order of the

irreducible polarization P, we can include the electron–hole

interaction.

8. Conclusion

A brief review of XANES theories has been given which

focuses on the basic theoretical framework rather than the

technical details. Depending on the different theoretical

approaches, some different physical aspects are stressed.

Because of the limited space for this chapter, we cannot

discuss the XANES measured using X-ray Raman scattering

(Schülke, 2007) and electron energy losses (EELS; Fujikawa,

2002).
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